Targeted treatment of CD22-positive non-Hodgkin’s lymphoma with sialic acid–modified chitosan-PLGA hybrid nanoparticles

  • Haixi ZhangEmail author
  • Jie Zhao
  • Xuezhong Gu
  • Yan Wen
Research Paper


B cell–derived non-Hodgkin’s lymphoma is a lymphatic system tumor that is a serious threat to human health. It is mainly treated by chemotherapy drugs. However, the lack of targeted performance of drug has always been one of the important reasons for limiting application in clinical. In this study, negatively charged sialic acid (SA)–modified PLGA nanoparticles (NPs) were prepared under the guidance of cationic chitosan, and the anti-tumor drug doxorubicin (DOX) was loaded to obtain DOX/SC-PLGA NP (195.9 ± 2.3 nm). In the drug release experiment, it was revealed that the drug-loaded nanoparticles can be destroyed under acidic conditions to rapidly release the drug due to the charge reversal. In in vitro flow cytometry experiments, SA-modified NP not only can promote more uptake by CD22-positive Raji cells but also can promote upregulation of Bax and downregulation of Bcl-2 expression, thereby promoting tumor cell apoptosis. The MTT assay also confirmed that DOX/SC-PLGA NP can effectively reduce the cell viability of Raji cells and JeKo-1 cells. In the NHL model of Raji cell transplantation tumor mice, DOX/SC-PLGA NP not only shows superior tumor targeting ability but also reduces the enrichment of DOX in the lungs and kidneys, and reduces the myelosuppressive effect of DOX. In the observation of efficacy, it was found that DOX/SC-PLGA NP significantly reduced the tumor volume of NHL. The linear relationship between tumor drug concentration and tumor volume also shows that SC-PLGA NP can better aggregate and exert therapeutic effects in NHL. The above results indicate that SA, as a ligand for CD22, can be used as a good nanomedicine targeting unit for the treatment of NHL models with high CD22 expression.

Graphical abstract


Sialic acid CD22 Nanocarrier Non-Hodgkin’s lymphoma Targeted therapy Nanomedicine 



Thanks to the Analysis Center of Kunming University of Science and Technology for assistance with TEM.

Compliance with ethical standards

All animal experiments comply with the ARRIVE guidelines and were carried out in accordance with the UK Animals (Scientific Procedures) Act, 1986 and associated guidelines, EU Directive 2010/63/EU for animal experiments.

Conflict of interest

The authors declare that they have no competing interests.


  1. Allen TM, Cullis PR (2013) Liposomal drug delivery systems: from concept to clinical applications. Adv Drug Deliv Rev 65:36–48. CrossRefGoogle Scholar
  2. Ansell SM (2015) Non-Hodgkin lymphoma: diagnosis and treatment. Mayo Clin Proc 90:1152–1163. CrossRefGoogle Scholar
  3. Armitage JO, Gascoyne RD, Lunning MA, Cavalli F (2017) Non-Hodgkin lymphoma. Lancet 390:298–310. CrossRefGoogle Scholar
  4. Bartlett NL, Petroni GR, Parker BA, Wagner ND, Gockerman JP, Omura GA, Canellos GP, Cooper MR, Johnson JL, Peterson BA (2001) Dose-escalated cyclophosphamide, doxorubicin, vincristine, prednisone, and etoposide (CHOPE) chemotherapy for patients with diffuse lymphoma: cancer and leukemia group B studies 8852 and 8854. Cancer 92:207–217CrossRefGoogle Scholar
  5. Bierman PJ, Sweetenham JW, Loberiza FR Jr, Taghipour G, Lazarus HM, Rizzo JD, Schmitz N, van Besien K, Vose JM, Horowitz M, Goldstone A, Lymphoma Working Committee of the International Bone Marrow Transplant Registry and the European Group for Blood and Marrow Transplantation (2003) Syngeneic hematopoietic stem-cell transplantation for non-Hodgkin’s lymphoma: a comparison with allogeneic and autologous transplantation--the Lymphoma Working Committee of the International Bone Marrow Transplant Registry and the European Group for Blood and Marrow Transplantation. J Clin Oncol 21:3744–3753. CrossRefGoogle Scholar
  6. Blank M, Shoenfeld Y (2010) Sialic acid-IVIg targeting CD22. Blood 116:1630–1632. CrossRefGoogle Scholar
  7. Calzone KA, Lea DH, Masny A (2006) Non-Hodgkin’s lymphoma as an exemplar of the effects of genetics and genomics. J Nurs Scholarsh 38:335–343CrossRefGoogle Scholar
  8. Campbell P, Iland H, Gibson J, Joshua D (1999) Syngeneic stem cell transplantation for HIV-related lymphoma. Br J Haematol 105:795–798CrossRefGoogle Scholar
  9. Carella AM, Cavaliere M, Lerma E, Ferrara R, Tedeschi L, Romanelli A, Vinci M, Pinotti G, Lambelet P, Loni C, Verdiani S, de Stefano F, Valbonesi M, Corsetti MT (2000) Autografting followed by nonmyeloablative immunosuppressive chemotherapy and allogeneic peripheral-blood hematopoietic stem-cell transplantation as treatment of resistant Hodgkin’s disease and non-Hodgkin’s lymphoma. J Clin Oncol 18:3918–3924. CrossRefGoogle Scholar
  10. Cheson BD, Leonard JP (2008) Monoclonal antibody therapy for B-cell non-Hodgkin’s lymphoma. N Engl J Med 359:613–626. CrossRefGoogle Scholar
  11. Clarke CA, Morton LM, Lynch C, Pfeiffer RM, Hall EC, Gibson TM, Weisenburger DD, Martínez-Maza O, Hussain SK, Yang J, Chang ET, Engels EA (2013) Risk of lymphoma subtypes after solid organ transplantation in the United States. Br J Cancer 109:280–288. CrossRefGoogle Scholar
  12. Epstein MA, Achong BG, Barr YM (1964) Virus particles in cultured lymphoblasts from Burkitt’s lymphoma. Lancet 1:702–703CrossRefGoogle Scholar
  13. Ereno-Orbea J et al (2017) Molecular basis of human CD22 function and therapeutic targeting. Nat Commun 8:764. CrossRefGoogle Scholar
  14. Fang D, Nguyen TK, Leishear K, Finko R, Kulp AN, Hotz S, van Belle PA, Xu X, Elder DE, Herlyn M (2005) A tumorigenic subpopulation with stem cell properties in melanomas. Cancer Res 65:9328–9337. CrossRefGoogle Scholar
  15. Friberg LE, Henningsson A, Maas H, Nguyen L, Karlsson MO (2002) Model of chemotherapy-induced myelosuppression with parameter consistency across drugs. J Clin Oncol 20:4713–4721. CrossRefGoogle Scholar
  16. Gale RP (1985) Antineoplastic chemotherapy myelosuppression: mechanisms and new approaches. Exp Hematol 13(Suppl 16):3–7Google Scholar
  17. Gangadhar T, Schilsky RL (2010) Molecular markers to individualize adjuvant therapy for colon cancer. Nat Rev Clin Oncol 7:318–325. CrossRefGoogle Scholar
  18. Goldsmith SJ (2010) Radioimmunotherapy of lymphoma: Bexxar and Zevalin. Semin Nucl Med 40:122–135. CrossRefGoogle Scholar
  19. Green DJ, Press OW (2017) Whither radioimmunotherapy: to be or not to be? Cancer Res 77:2191–2196. CrossRefGoogle Scholar
  20. Gregory SA, Case DC Jr, Bosserman L, Litwak DL, Berry WR, Kalman LA, Belt RJ, Saven A (2003) Fourteen-day CHOP supported with granulocyte colony-stimulating factor in patients with aggressive non-Hodgkin’s lymphoma: results of a phase II study. Clin Lymphoma 4:93–98CrossRefGoogle Scholar
  21. Haas KM, Sen S, Sanford IG, Miller AS, Poe JC, Tedder TF (2006) CD22 ligand binding regulates normal and malignant B lymphocyte survival in vivo. J Immunol 177:3063–3073CrossRefGoogle Scholar
  22. Hu J, Sheng Y, Shi J, Yu B, Yu Z, Liao G (2018) Long circulating polymeric nanoparticles for gene/drug delivery. Curr Drug Metab 19:723–738. CrossRefGoogle Scholar
  23. Itoh K et al (2002) Randomized phase II study of biweekly CHOP and dose-escalated CHOP with prophylactic use of lenograstim (glycosylated G-CSF) in aggressive non-Hodgkin’s lymphoma: Japan Clinical Oncology Group Study 9505. Ann Oncol 13:1347–1355CrossRefGoogle Scholar
  24. Kamath PR, Sunil D (2017) Nano-chitosan particles in anticancer drug delivery: an up-to-date review. Mini-Rev Med Chem 17:1457–1487. CrossRefGoogle Scholar
  25. Kuppers R, Duhrsen U, Hansmann ML (2014) Pathogenesis, diagnosis, and treatment of composite lymphomas. Lancet Oncol 15:e435–e446. CrossRefGoogle Scholar
  26. Lehmann F, Tiralongo E, Tiralongo J (2006) Sialic acid-specific lectins: occurrence, specificity and function. Cell Mol Life Sci 63:1331–1354. CrossRefGoogle Scholar
  27. Levi F, Lucchini F, Negri E, La Vecchia C (2002) Trends in mortality from non-Hodgkin’s lymphomas. Leuk Res 26:903–908CrossRefGoogle Scholar
  28. Li P, Yang Z, Wang Y, Peng Z, Li S, Kong L, Wang Q (2015) Microencapsulation of coupled folate and chitosan nanoparticles for targeted delivery of combination drugs to colon. J Microencapsul 32:40–45. CrossRefGoogle Scholar
  29. Li Z, Tan S, Li S, Shen Q, Wang K (2017) Cancer drug delivery in the nano era: an overview and perspectives (Review). Oncol Rep 38:611–624. CrossRefGoogle Scholar
  30. Lin H, Chen Y, Shi J (2018) Nanoparticle-triggered in situ catalytic chemical reactions for tumour-specific therapy. Chem Soc Rev 47:1938–1958. CrossRefGoogle Scholar
  31. Maloney DG, Grillo-López AJ, White CA, Bodkin D, Schilder RJ, Neidhart JA, Janakiraman N, Foon KA, Liles TM, Dallaire BK, Wey K, Royston I, Davis T, Levy R (1997) IDEC-C2B8 (rituximab) anti-CD20 monoclonal antibody therapy in patients with relapsed low-grade non-Hodgkin’s lymphoma. Blood 90:2188–2195Google Scholar
  32. Metzger ML, Mauz-Korholz C (2019) Epidemiology, outcome, targeted agents and immunotherapy in adolescent and young adult non-Hodgkin and Hodgkin lymphoma. Br J Haematol 185:1142–1157. CrossRefGoogle Scholar
  33. Miller TP, Dahlberg S, Cassady JR, Adelstein DJ, Spier CM, Grogan TM, LeBlanc M, Carlin S, Chase E, Fisher RI (1998) Chemotherapy alone compared with chemotherapy plus radiotherapy for localized intermediate- and high-grade non-Hodgkin’s lymphoma. N Engl J Med 339:21–26. CrossRefGoogle Scholar
  34. Mokdad AH, Dwyer-Lindgren L, Fitzmaurice C, Stubbs RW, Bertozzi-Villa A, Morozoff C, Charara R, Allen C, Naghavi M, Murray CJL (2017) Trends and patterns of disparities in cancer mortality among US counties, 1980-2014. JAMA 317:388–406. CrossRefGoogle Scholar
  35. Morell AG, Gregoriadis G, Scheinberg IH, Hickman J, Ashwell G (1971) The role of sialic acid in determining the survival of glycoproteins in the circulation. J Biol Chem 246:1461–1467Google Scholar
  36. Nadal E, Martinez A, Jimenez M, Gines A, Campo E, Pique J, Lopez-Guillermo A (2002) Primary follicular lymphoma arising in the ampulla of Vater. Ann Hematol 81:228–231. CrossRefGoogle Scholar
  37. Nissen NI, Ersboll J, Hansen HS, Walbom-Jorgensen S, Pedersen-Bjergaard J, Hansen MM, Rygard J (1983) A randomized study of radiotherapy versus radiotherapy plus chemotherapy in stage I-II non-Hodgkin’s lymphomas. Cancer 52:1–7CrossRefGoogle Scholar
  38. Nitschke L, Carsetti R, Ocker B, Kohler G, Lamers MC (1997) CD22 is a negative regulator of B-cell receptor signalling. Curr Biol 7:133–143CrossRefGoogle Scholar
  39. Otipoby KL, Andersson KB, Draves KE, Klaus SJ, Farr AG, Kerner JD, Perlmutter RM, Law CL, Clark EA (1996) CD22 regulates thymus-independent responses and the lifespan of B cells. Nature 384:634–637. CrossRefGoogle Scholar
  40. Ozgor L, Meyer SJ, Korn M, Terorde K, Nitschke L (2018) Sialic acid ligand binding of CD22 and Siglec-G determines distinct B cell functions but is dispensable for B cell tolerance induction. J Immunol 201:2107–2116. CrossRefGoogle Scholar
  41. Perez-Callejo D, Gonzalez-Rincon J, Sanchez A, Provencio M, Sanchez-Beato M (2015) Action and resistance of monoclonal CD20 antibodies therapy in B-cell non-Hodgkin lymphomas. Cancer Treat Rev 41:680–689. CrossRefGoogle Scholar
  42. Perry AM, Diebold J, Nathwani BN, MacLennan KA, Muller-Hermelink HK, Bast M, Boilesen E, Armitage JO, Weisenburger DD (2016) Non-Hodgkin lymphoma in the developing world: review of 4539 cases from the International Non-Hodgkin Lymphoma Classification Project. Haematologica 101:1244–1250. CrossRefGoogle Scholar
  43. Poe JC, Fujimoto Y, Hasegawa M, Haas KM, Miller AS, Sanford IG, Bock CB, Fujimoto M, Tedder TF (2004) CD22 regulates B lymphocyte function in vivo through both ligand-dependent and ligand-independent mechanisms. Nat Immunol 5:1078–1087. CrossRefGoogle Scholar
  44. Ponzetto A, Carloni G (2016) Hepatitis C virus and lymphoma. Hepatology 64:1813. CrossRefGoogle Scholar
  45. Salles G, Barrett M, Foà R, Maurer J, O’Brien S, Valente N, Wenger M, Maloney DG (2017) Rituximab in B-cell hematologic malignancies: a review of 20 years of clinical experience. Adv Ther 34:2232–2273. CrossRefGoogle Scholar
  46. Sato S, Miller AS, Inaoki M, Bock CB, Jansen PJ, Tang ML, Tedder TF (1996) CD22 is both a positive and negative regulator of B lymphocyte antigen receptor signal transduction: altered signaling in CD22-deficient mice. Immunity 5:551–562CrossRefGoogle Scholar
  47. Schauer R (2000) Achievements and challenges of sialic acid research. Glycoconj J 17:485–499CrossRefGoogle Scholar
  48. Shankland KR, Armitage JO, Hancock BW (2012) Non-Hodgkin lymphoma. Lancet 380:848–857. CrossRefGoogle Scholar
  49. Sharma AK, Gothwal A, Kesharwani P, Alsaab H, Iyer AK, Gupta U (2017) Dendrimer nanoarchitectures for cancer diagnosis and anticancer drug delivery. Drug Discov Today 22:314–326. CrossRefGoogle Scholar
  50. Shipp MA, Neuberg D, Janicek M, Canellos GP, Shulman LN (1995) High-dose CHOP as initial therapy for patients with poor-prognosis aggressive non-Hodgkin’s lymphoma: a dose-finding pilot study. J Clin Oncol 13:2916–2923. CrossRefGoogle Scholar
  51. Smith MR (2003) Rituximab (monoclonal anti-CD20 antibody): mechanisms of action and resistance. Oncogene 22:7359–7368. CrossRefGoogle Scholar
  52. Tedder TF, Tuscano J, Sato S, Kehrl JH (1997) CD22, a B lymphocyte-specific adhesion molecule that regulates antigen receptor signaling. Annu Rev Immunol 15:481–504. CrossRefGoogle Scholar
  53. Tuscano JM et al (2003) Anti-CD22 ligand-blocking antibody HB22.7 has independent lymphomacidal properties and augments the efficacy of 90Y-DOTA-peptide-Lym-1 in lymphoma xenografts. Blood 101:3641–3647. CrossRefGoogle Scholar
  54. Wang Y, Li P, Kong L (2013a) Chitosan-modified PLGA nanoparticles with versatile surface for improved drug delivery. AAPS PharmSciTech 14:585–592. CrossRefGoogle Scholar
  55. Wang YC, Li PW, Peng Z, She FH, Kong LX (2013b) Microencapsulation of nanoparticles with enhanced drug loading for pH-sensitive oral drug delivery for the treatment of colon cancer. J Appl Polym Sci 129:714–720. CrossRefGoogle Scholar
  56. Wang Y, Li P, Truong-Dinh Tran T, Zhang J, Kong L (2016) Manufacturing techniques and surface engineering of polymer based nanoparticles for targeted drug delivery to cancer. Nanomaterials (Basel) 6. CrossRefGoogle Scholar
  57. Yhee JY, Son S, Lee H, Kim K (2015) Nanoparticle-based combination therapy for cancer treatment. Curr Pharm Des 21:3158–3166CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of HematologyThe First People’s Hospital of Yunnan ProvinceKunmingChina
  2. 2.The Affiliated Hospital of Kunming University of Science and TechnologyKunmingChina

Personalised recommendations