Skip to main content
Log in

Semiconductor behavior of pentagonal silver nanowires measured under mechanical deformation

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

In the present work, electrical measurements using in situ transmission electron microscopy (TEM) on pentagonal silver nanowires were performed. Electrical biasing was applied to individual nanowires with and without simultaneous in situ TEM mechanical deformation. The response of the ohmic resistance was measured in the I-V curves. A reduction in the break voltage and the resistance was measured, when the nanowires were subjected to a bending deformation. In situ electric measurements on both, with and without deformation, show a typical semiconductor behavior. Surface scattering of electrons in the nanowires and movement of dislocations act as the main causes of the electrical properties reported herein. In this way, the determination of the surface morphology was carried out by using off-axis electron holography followed by a phase reconstruction and structural modeling. The high Miller-index facets were determined to be the (533) stepped surface plane on all five longitudinal sides of the nanowires. Additionally, due to electrical saturation, a breakdown of the nanowires was observed during the in situ electrical measurements without mechanical deformation.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alducin D, Borja R, Ortega E, Velazquez-Salazar JJ, Covarrubias M, Mendoza Santoyo F, Bazán-Díaz L, Sanchez JE, Torres N, Ponce A, José-Yacamán M (2016) In situ transmission electron microscopy mechanical deformation and fracture of a silver nanowire. Scr Mater 113:63–67

    Article  CAS  Google Scholar 

  • Batra NM, Syed A, Costa PMFJ (2019) Current-induced restructuring in bent silver nanowires. Nanoscale 11:3606–3618

    Article  CAS  Google Scholar 

  • Bhattarai N, Casillas G, Khanal S, Velazquez Salazar JJ, Ponce A, Jose-Yacaman M (2013) Origin and shape evolution of core – shell nanoparticles in Au – Pd: from few atoms to high Miller index facets. J Nanopart Res 15:1–13

    Article  Google Scholar 

  • Cantu-Valle J, Ruiz-Zepeda F, Voelkl E, Kawasaki M, Santiago U, José-Yacaman M, Ponce A (2013) Determination of the surface morphology of gold-decahedra nanoparticles using an off-axis electron holography dual-lens imaging system. Micron 54–55:82–86

    Article  Google Scholar 

  • Chiquito AJ, Amorim CA, Berengue OM, Araujo LS, Bernardo EP, Leite ER (2012) Back-to-back Schottky diodes: the generalization of the diode theory in analysis and extraction of electrical parameters of nanodevices. J Phys Condens Matter 24:1

    Article  Google Scholar 

  • Dingle RB (1950) The electrical conductivity of thin wires. Proc R Soc A 201:545–560

    Article  Google Scholar 

  • Ghosh S, Raychaudhuri AK (2013) Link between depressions of melting temperature and Debye temperature in nanowires and its implication on Lindeman relation. J Appl Phys 114:224313

    Article  Google Scholar 

  • Graff A, Wagner D, Ditlbacher H, Kreibig U (2005) Silver nanowires. Eur Phys J D 34:263–269

    Article  CAS  Google Scholar 

  • Hansen GW (2008) Fundamentals of nanoelectronisc, 1st edn. Pearson/Prentice Hall, Upper Saddle River

    Google Scholar 

  • Hu L, Kim HS, Lee J, Peumans (2010) Scalable coating and properties of transparent, flexible, silver nanowire electrodes. ACS Nano 4:2955–2963

    Article  CAS  Google Scholar 

  • Huang Q, Lilley CM, Bode M, Divan R (2008) Surface and size effects on the electrical properties of Cu nanowires. J Appl Phys 104:023709

    Article  Google Scholar 

  • Ishida T, Kakushima K, Mizoguchi T, Fujita H (2012) Role of dislocation movement in the electrical conductance of nanocontacts. Sci Rep 2:21–24

    Article  Google Scholar 

  • Jia N, Feng X, Chen G (2013) Electromechanical properties of a zigzag ZnO nanotube under local torsion. J Nanopart Res 15:2145

    Article  Google Scholar 

  • Jing GY, Duan HL, Sun XM, Zhang ZS, Xu J, Li YD, Wang JX, Yu DP (2006) Surface effects on elastic properties of silver nanowires: contact atomic-force microscopy. Phys Rev B 73:235409

    Article  Google Scholar 

  • Kang MG, Xu T, Park HJ, Luo X, Guo LJ (2010) Efficiency enhancement of organic solar cells using transparent plasmonic Ag nanowire electrodes. Adv Mater 22:4378–4383

    Article  CAS  Google Scholar 

  • Lee S, Lee JS, Jang J, Hong KH, Lee DK, Song S, Kim K, Eo YJ, Yun JH, Gwak J, Chung CH (2018) Robust nanoscale contact of silver nanowire electrodes to semiconductors to achieve high performance chalcogenide thin film solar cells. Nano Energy 53:675–682

    Article  CAS  Google Scholar 

  • Li S, Yu Z, Rutherglen C, Burke PJ (2004) Electrical properties of 0.4 cm long single-walled carbon nanotubes. Nano Lett 4:2003–2007

    Article  CAS  Google Scholar 

  • Liu X, Zhu J, Jin C, Peng LM, Tang D, Cheng H (2008) In situ electrical measurements of polytypic silver nanowires. Nanotechnology 19:1–6

    CAS  Google Scholar 

  • Loh OY, Espinosa HD (2012) Nanoelectromechanical contact switches. Nat Nanotechnol 7:283–295

    Article  CAS  Google Scholar 

  • Mandal SK, Kabir L (2014) Semiconductor-metal-semiconductor transition in Bi and Bi-Ag nanowires. J Phys D Appl Phys 47:325302

    Article  Google Scholar 

  • Mukherjee PK, Chatterjee K, Chakravorty D (2006) Semiconductor to metal transition in PbS nanowires grown in mica channels. Phys Rev B 73:034414

    Article  Google Scholar 

  • Pascual JI, Méndez J, Gómez-Herrero J, Baró AM, Garcia N, Landman U, Luedtke WD, Bogachek EN, Chend HP (1995) Properties of metallic nanowires: from conductance quantization to localization. Science 267:1793–1795

    Article  CAS  Google Scholar 

  • Pozzi G, Beleggia M, Kasama T, Dunin-borkowski RE (2014) Interferometric methods for mapping static electric and magnetic fields. Comptes Rendus Phys 15:126–139

    Article  CAS  Google Scholar 

  • Ruiz-Zepeda F, Casallas-Moreno YL, Cantu-Valle J, Alducin D, Santiago U, Jose-Yacaman M, Lopez-Lopez M, Ponce A (2014) Precession electron diffraction-assisted crystal phase mapping of metastable c-GaN films grown on (001) GaAs. Microsc Res Tech 77:980–985

    Article  CAS  Google Scholar 

  • Sangid MD, Maier HJ, Sehitoglu H (2011) The role of grain boundaries on fatigue crack initiation - an energy approach. Int J Plast 27:801–821

    Article  Google Scholar 

  • Santiago U, Velazquez-Salazar JJ, Sanchez JE, Ruiz-Zepeda F, Ortega JE, Reyes-Gasga J, Bazan-Diaz L, Betancourt I, Rauch EF, Veron M, Ponce A, Jose Yacaman M (2016) A stable multiply twinned decahedral gold nanoparticle with a barrel-like shape. Surf Sci 644:80–85

    Article  CAS  Google Scholar 

  • Somorjai GA, Li Y (2010) Surface chemistry and catalysis, 2nd edn. John Wiley and Sons

  • Sun Y, Mayers B, Herricks T, Xia Y (2003) Polyol synthesis of uniform silver nanowires: a plausible growth mechanism and the supporting evidence. Nano Lett 3:955–960

    Article  CAS  Google Scholar 

  • Sun Y, Thompson SE, Nishida T (2010) Strain effect in semiconductors. Springer Science & Business Media

  • Sun Y, Ren Y, Liu Y, Wen J, Okasinski JS, Miller DJ (2012) Ambient-stable tetragonal phase in silver nanostructures. Nat Commun 3:971–976

    Article  Google Scholar 

  • Tan Y, Wang YG (2013) Strain-sensitive current-voltage characteristics of ZnSe nanowire in metal-semiconductor-metal nanostructure. Chin Phys Lett 30:117901

    Article  Google Scholar 

  • Tang S, Vongehr S, Wan N, Meng X (2013) Rapid synthesis of pentagonal silver nanowires with diameter-dependent tensile yield strength. Mater Chem Phys 142:17–26

    Article  CAS  Google Scholar 

  • Toimil Molares ME, Höhberger EM, Schaeflein C, Blick RH, Neumann R, Trautmann C (2003) Electrical characterization of electrochemically grown single copper nanowires. Appl Phys Lett 82:2139–2141

    Article  CAS  Google Scholar 

  • Vlassov S, Polyakov B, Dorogin LM, Antsov M, Mets M, Umalas M, Saar R, Lohmus R, Kink I (2014) Elasticity and yield strength of pentagonal silver nanowires: in situ bending tests. Mater Chem Phys 143:1026–1031

    Article  CAS  Google Scholar 

  • Voelkl E (2019) Electron holography for everyone – here it comes. Micros Today 27:34–35

    Article  Google Scholar 

  • Wiley B, Sun Y, Mayers B, Xia Y (2005) Shape controlled synthesis of metal nanostructures: the case of silver. ChemEur J 11:454–463

    CAS  Google Scholar 

  • Wiley BJ, Wang Z, Wei J, Yin Y, Cobden DH, Xia Y (2006) Synthesis and electrical characterization of silver nanobeams. Nano Lett 6:2273–2278

    Article  CAS  Google Scholar 

  • Wu B, Heidelbeerg A, Boland JJ, Sader JE, Sun XM, Li YD (2006) Microstructure-hardened silver nanowires. Nano Lett 6:468–472

    Article  CAS  Google Scholar 

  • Wu TL, Whittaker L, Banerjee S, Sambandamurthy G (2011) Temperature and voltage driven tunable metal-insulator transition in individual WxV1-xO2 nanowires. Phys Rev B 83:073101

    Article  Google Scholar 

  • Zhang ZY, Jin CH, Liang XL, Chen Q, Peng LM (2006) Current-voltage characteristics and parameter retrieval of semiconducting nanowires. Appl Phys Lett 88:073102

    Article  Google Scholar 

  • Zhao J, Sun H, Dai S, Wang Y, Zhu J (2011) Electrical breakdown of nanowires. Nano Lett 11:4647–4651

    Article  CAS  Google Scholar 

  • Zhu Y, Qin Q, Xu F, Fan F, Ding Y, Zhang T, Wiley BJ, Wang ZL (2012) Size effects on elasticity, yielding, and fracture of silver nanowires: in situ experiments. Phys Rev B 85:045443

    Article  Google Scholar 

Download references

Acknowledgments

The electron microscopy work was performed at the Kleberg Advanced Microscopy Center (KAMC) at UTSA. EO and CF thank to Conacyt for graduate fellowship during their works.

Funding

The Department of Defense supported this study with grant # W911NF-18-1-0439.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arturo Ponce.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ochoa, E., Alducin, D., Sanchez, J.E. et al. Semiconductor behavior of pentagonal silver nanowires measured under mechanical deformation. J Nanopart Res 21, 134 (2019). https://doi.org/10.1007/s11051-019-4577-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-019-4577-3

Keywords

Navigation