Skip to main content
Log in

One-step in situ growing CoS1.097 nanoplates on flexible graphite paper as efficient and stable FTO-free counter electrodes for dye-sensitized solar cells

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Hexagonal single crystal CoS1.097 nanoplates with the size of 200~500 nm have successfully in situ grown on flexible graphite paper (GP) and FTO substrates with a one-step hydrothermal method, which are used as counter electrodes (CEs) of dye-sensitized solar cells (DSSCs) and show different microstructures and different electrocatalytic activities for I3 reduction. The DSSC based on CoS1.097/GP CE shows larger fill factor and higher short-circuit current density than the DSSCs with Pt/FTO CE and CoS1.097/FTO CE, which attribute to the excellent electrical conductivity of GP and predominant electrocatalytic activity of hexagonal single crystal CoS1.097 nanoplates with the addition of a small electrocatalytic contribution of GP. Therefore, the DSSC with the CoS1.097/GP CE shows the highest photoelectric conversion efficiency (6.99%) among these DSSCs. Furthermore, the CoS1.097/GP CE still shows excellent electrochemical and mechanical stability in the iodine-based electrolyte after enduring the S-type mechanical perturbation. This work indicates the flexible CoS1.097/GP electrode is a promising candidate to replace Pt/FTO CE as a Pt-free, FTO-free, low cost, exceptionally stable, and high-efficient CE of DSSC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Bao C, Li F, Wang J, Sun P, Huang N, Sun Y, Fang L, Wang L, Sun X (2016) One-pot solvothermal in situ growth of 1D single-crystalline NiSe on Ni foil as efficient and stable transparent conductive oxide free counter electrodes for dye-sensitized solar cells. ACS Appl Mater Interfaces 8:32788–32796. https://doi.org/10.1021/acsami.6b10198

    Article  CAS  Google Scholar 

  • Bu C, Tai Q, Liu Y, Guo S, Zhao X (2013) A transparent and stable polypyrrole counter electrode for dye-sensitized solar cell. J Power Sources 221:78–83

    Article  CAS  Google Scholar 

  • Cao F, Zhao M, Yu Y, Chen B, Huang Y, Yang J, Cao X, Lu Q, Zhang X, Zhang Z, Tan C, Zhang H (2016) Synthesis of two-dimensional CoS1.097/nitrogen-doped carbon nanocomposites using metal-organic framework nanosheets as precursors for supercapacitor application. J Am Chem Soc 138:6924–6927. https://doi.org/10.1021/jacs.6b02540

    Article  CAS  Google Scholar 

  • Chen C, Ye MD, Zhang N, Wen X, Zheng D, Lin CJ (2015) Preparation of hollow Co9S8 nanoneedle arrays as effective counter electrodes for quantum dot-sensitized solar cells. J Mater Chem A 3:6311–6314. https://doi.org/10.1039/c4ta06987k

    Article  CAS  Google Scholar 

  • Chen JK, Li KX, Luo YH, Guo XZ, Li DM, Deng MH, Huang SQ, Meng QB (2009) A flexible carbon counter electrode for dye-sensitized solar cells. Carbon 47:2704–2708

    Article  CAS  Google Scholar 

  • Duan X, Gao Z, Chang J, Wu D, Ma P, He J, Xu F, Gao S, Jiang K (2013) CoS2 –graphene composite as efficient catalytic counter electrode for dye-sensitized solar cell. Electrochim Acta 114:173–179

    Article  CAS  Google Scholar 

  • Fang X, Ma T, Akiyama M, Guan G, Tsunematsu S, Abe E (2005) Flexible counter electrodes based on metal sheet and polymer film for dye-sensitized solar cells. Thin Solid Films 472:242–245. https://doi.org/10.1016/j.tsf.2004.07.083

    Article  CAS  Google Scholar 

  • He B, Tang Q, Luo J, Li Q, Chen X, Cai H (2014) Rapid charge-transfer in polypyrrole–single wall carbon nanotube complex counter electrodes: improved photovoltaic performances of dye-sensitized solar cells. J Power Sources 256:170–177

    Article  CAS  Google Scholar 

  • Hou S, Cai X, Wu H, Yu X, Peng M, Yan K, Zou D (2013) Nitrogen-doped graphene for dye-sensitized solar cells and the role of nitrogen states in triiodide reduction. Energy Environ Sci 6:3356–3362. https://doi.org/10.1039/c3ee42516a

    Article  CAS  Google Scholar 

  • Hou WJ, Xiao YM, Han GY, Fu DY, Wu RF (2016) Serrated, flexible and ultrathin polyaniline nanoribbons: an efficient counter electrode for the dye-sensitized solar cell. J Power Sources 322:155–162. https://doi.org/10.1016/j.jpowsour.2016.05.023

    Article  CAS  Google Scholar 

  • Hu ZL, Xia K, Zhang J, Hu ZY, Zhu YJ (2014) In situ growth of novel laminar-shaped Co3S4 as an efficient counter electrode for dye-sensitized solar cells. RSC Adv 4:42917–42923. https://doi.org/10.1039/c4ra08518c

    Article  CAS  Google Scholar 

  • Huang N, Li G, Xia Z, Zheng F, Huang H, Li W, Xiang C, Sun Y, Sun P, Sun X (2017) Solution-processed relatively pure MoS2 nanoparticles in-situ grown on graphite paper as an efficient FTO-free counter electrode for dye-sensitized solar cells. Electrochim Acta 235:182–190. https://doi.org/10.1016/j.electacta.2017.02.111

    Article  CAS  Google Scholar 

  • Huang N, Zhang S, Huang H, Liu J, Sun Y, Sun P, Bao C, Zheng L, Sun X, Zhao X (2016) Pt-sputtering-like NiCo2S4 counter electrode for efficient dye-sensitized solar cells. Electrochim Acta 192:521–528. https://doi.org/10.1016/j.electacta.2016.02.004

    Article  CAS  Google Scholar 

  • Huo J, Wu J, Zheng M, Tu Y, Lan Z (2015a) Effect of ammonia on electrodeposition of cobalt sulfide and nickel sulfide counter electrodes for dye-sensitized solar cells. Electrochim Acta 180:574–580

    Article  CAS  Google Scholar 

  • Huo J, Wu J, Zheng M, Tu Y, Lan Z (2015b) High performance sponge-like cobalt sulfide/reduced graphene oxide hybrid counter electrode for dye-sensitized solar cells. J Power Sources 293:570–576. https://doi.org/10.1016/j.jpowsour.2015.05.117

    Article  CAS  Google Scholar 

  • Huo J, Wu J, Zheng M, Tu Y, Lan Z (2016) Flower-like nickel cobalt sulfide microspheres modified with nickel sulfide as Pt-free counter electrode for dye-sensitized solar cells. J Power Sources 304:266–272

    Article  CAS  Google Scholar 

  • Huo J, Zheng M, Tu Y, Wu J, Hu L, Dai S (2015c) A high performance cobalt sulfide counter electrode for dye-sensitized solar cells. Electrochim Acta 159:166–173. https://doi.org/10.1016/j.electacta.2015.01.214

    Article  CAS  Google Scholar 

  • Jeon I-Y, Kim HM, Choi IT, Lim K, Ko J, Kim JC, Choi H-J, Ju MJ, Lee J-J, Kim HK, Baek J-B (2015) High-performance dye-sensitized solar cells using edge-halogenated graphene nanoplatelets as counter electrodes. Nano Energy 13:336–345. https://doi.org/10.1016/j.nanoen.2015.02.037

    Article  CAS  Google Scholar 

  • Jin JR, Zhang XH, He T (2014) Self-assembled CoS2 nanocrystal film as an efficient counter electrode for dye-sensitized solar cells. J Phys Chem C 118:24877–24883. https://doi.org/10.1021/jp508814y

    Article  CAS  Google Scholar 

  • Ke W, Fang G, Tao H, Qin P, Wang J, Lei H, Liu Q, Zhao X (2014) In situ synthesis of NiS nanowall networks on Ni foam as a TCO-free counter electrode for dye-sensitized solar cells. ACS Appl Mater Interfaces 6:5525–5530. https://doi.org/10.1021/am4059155

    Article  CAS  Google Scholar 

  • Ko YN, Choi SH, Park SB, Kang YC (2014) Preparation of yolk-shell and filled Co9S8 microspheres and comparison of their electrochemical properties. Chem Asian J 9:572–576. https://doi.org/10.1002/asia.201301209

    Article  CAS  Google Scholar 

  • Li C-T, Lee C-T, Li S-R, Lee C-P, Chiu IT, Vittal R, Wu N-L, Sun S-S, Ho K-C (2016) Composite films of carbon black nanoparticles and sulfonated-polythiophene as flexible counter electrodes for dye-sensitized solar cells. J Power Sources 302:155–163. https://doi.org/10.1016/j.jpowsour.2015.10.028

    Article  CAS  Google Scholar 

  • Li F, Wang J, Zheng L, Zhao Y, Huang N, Sun P, Fang L, Wang L, Sun X (2018) In situ preparation of NiS2/CoS2 composite electrocatalytic materials on conductive glass substrates with electronic modulation for high-performance counter electrodes of dye-sensitized solar cells. J Power Sources 384:1–9. https://doi.org/10.1016/j.jpowsour.2018.02.048

    Article  CAS  Google Scholar 

  • Li GR, Wang F, Song J, Xiong FY, Gao XP (2012) TiN-conductive carbon black composite as counter electrode for dye-sensitized solar cells. Electrochim Acta 65:216–220

    Article  CAS  Google Scholar 

  • Li M, Zu M, Yu J, Cheng H, Li Q (2017) Stretchable fiber supercapacitors with high volumetric performance based on buckled MnO2/oxidized carbon nanotube fiber electrodes. Small 13:1602994. https://doi.org/10.1002/smll.201602994

    Article  CAS  Google Scholar 

  • Li Y, Wang H, Zhang H, Liu P, Wang Y, Fang W, Yang H, Li Y, Zhao H (2014) A {0001} faceted single crystal NiS nanosheet electrocatalyst for dye-sensitised solar cells: sulfur-vacancy induced electrocatalytic activity. Chem Commun (Camb) 50:5569–5571. https://doi.org/10.1039/c4cc01691b

    Article  CAS  Google Scholar 

  • Liao Y, Pan K, Pan Q, Wang G, Zhou W, Fu H (2015) In situ synthesis of a NiS/Ni3S2 nanorod composite array on Ni foil as a FTO-free counter electrode for dye-sensitized solar cells. Nanoscale 7:1623–1626. https://doi.org/10.1039/c4nr06534d

    Article  CAS  Google Scholar 

  • Lin CA, Lee CP, Ho ST, Wei TC, Chi YW, Huang KP, He JH (2014) Nitrogen-doped graphene/platinum counter electrodes for dye-sensitized solar cells. ACS Photonics 1:1264–1269

    Article  CAS  Google Scholar 

  • Lin JY, Liao JH (2012) Mesoporous electrodeposited-CoS film as a counter electrode catalyst in dye-sensitized solar cells. J Electrochem Soc 159:D65

    Article  CAS  Google Scholar 

  • Liu S, Mao C, Niu Y, Yi F, Hou J, Lu S, Jiang J, Xu M, Li C (2015) Facile synthesis of novel networked ultralong cobalt sulfide nanotubes and its application in supercapacitors. ACS Appl Mater Interfaces 7:25568–25573. https://doi.org/10.1021/acsami.5b08716

    Article  CAS  Google Scholar 

  • Ma T, Fang X, Akiyama M, Inoue K, Noma H, Abe E (2004) Properties of several types of novel counter electrodes for dye-sensitized solar cells. J Electroanal Chem 574:77–83. https://doi.org/10.1016/j.jelechem.2004.08.002

    Article  CAS  Google Scholar 

  • Miao X, Pan K, Wang G, Liao Y, Wang L, Zhou W, Jiang B, Pan Q, Tian G (2014) Well-dispersed CoS nanoparticles on a functionalized graphene nanosheet surface: a counter electrode of dye-sensitized solar cells. Chemistry 20:474–482. https://doi.org/10.1002/chem.201303558

    Article  CAS  Google Scholar 

  • Panneerselvam A, Malik MA, Afzaal M, O’Brien P, Helliwell M (2008) The chemical vapor deposition of nickel phosphide or selenide thin films from a single precursor. J Am Chem Soc 130:2420–2421. https://doi.org/10.1021/ja078202j

    Article  CAS  Google Scholar 

  • Pu J, Wang Z, Wu K, Yu N, Sheng E (2014) Co9S8 nanotube arrays supported on nickel foam for high-performance supercapacitors. Phys Chem Chem Phys 16:785–791. https://doi.org/10.1039/c3cp54192d

    Article  CAS  Google Scholar 

  • Que M, Guo W, Zhang X, Li X, Hua Q, Dong L, Pan C (2014) Flexible quantum dot-sensitized solar cells employing CoS nanorod arrays/graphite paper as effective counter electrodes. J Mater Chem A 2:13661. https://doi.org/10.1039/c4ta02052a

    Article  CAS  Google Scholar 

  • Sun H, Zhang L, Wang Z-S (2014) Single-crystal CoSe2 nanorods as an efficient electrocatalyst for dye-sensitized solar cells. J Mater Chem A 2:16023–16029. https://doi.org/10.1039/c4ta02238f

    Article  CAS  Google Scholar 

  • Sun P, Huang T, Chen Z, Tian L, Huang H, Huang N, Zhou S, Long M, Sun Y, Sun X (2017) Solution processed NixSy films: composition, morphology and crystallinity tuning via Ni/S-ratio-control and application in dye-sensitized solar cells. Electrochim Acta 246:285–293. https://doi.org/10.1016/j.electacta.2017.06.023

    Article  CAS  Google Scholar 

  • Sun P, Wu Z, Ai C, Zhang M, Zhang X, Huang N, Sun Y, Sun X (2016) Thermal evaporation of Sb2Se3 as novel counter electrode for dye-sensitized solar cells. Chemistryselect 1:1824–1831. https://doi.org/10.1002/slct.201600289

    Article  CAS  Google Scholar 

  • Sun X, Liu Y, Tai Q, Chen B, Peng T, Huang N, Xu S, Peng T, Zhao X-Z (2012) High efficiency dye-sensitized solar cells based on a bi-layered photoanode made of TiO2 nanocrystallites and microspheres with high thermal stability. J Phys Chem C 116:11859–11866. https://doi.org/10.1021/jp211838g

    Article  CAS  Google Scholar 

  • Tathavadekar M, Biswal M, Agarkar S, Giribabu L, Ogale S (2014) Electronically and catalytically functional carbon cloth as a permeable and flexible counter electrode for dye sensitized solar cell. Electrochim Acta 123:248–253

    Article  CAS  Google Scholar 

  • Tsai JC, Hon MH, Leu IC (2015a) Fabrication of mesoporous CoS2 nanotube arrays as the counter electrodes of dye-sensitized solar cells. Chem Asian J 10:1932–1939. https://doi.org/10.1002/asia.201500500

    Article  CAS  Google Scholar 

  • Tsai JC, Hon MH, Leu IC (2015b) Preparation of CoS2 nanoflake arrays through ion exchange reaction of Co(OH)2 and their application as counter electrodes for dye-sensitized solar cells. RSC Adv 5:4328–4333. https://doi.org/10.1039/c4ra10584b

    Article  CAS  Google Scholar 

  • Wang G, Zhang J, Kuang S, Liu S, Zhuo S (2014a) The production of cobalt sulfide/graphene composite for use as a low-cost counter-electrode material in dye-sensitized solar cells. J Power Sources 269:473–478

    Article  CAS  Google Scholar 

  • Wang L, Shi Y, Wang Y, Zhang H, Zhou H, Wei Y, Tao S, Ma T (2014b) Composite catalyst of rosin carbon/Fe3O4: highly efficient counter electrode for dye-sensitized solar cells. Chem Commun (Camb) 50:1701–1703. https://doi.org/10.1039/c3cc47163b

    Article  CAS  Google Scholar 

  • Wu J, Tang Z, Huang Y, Huang M, Yu H, Lin J (2014) A dye-sensitized solar cell based on platinum nanotube counter electrode with efficiency of 9.05%. J Power Sources 257:84–89

    Article  CAS  Google Scholar 

  • Wu M, Lin YN, Guo H, Li W, Wang Y, Lin X (2015) Design a novel kind of open-ended carbon sphere for a highly effective counter electrode catalyst in dye-sensitized solar cells. Nano Energy 11:540–549

    Article  CAS  Google Scholar 

  • Xiao Y, Han G, Chang Y, Zhang Y, Lin J-Y (2015a) Cobalt sulfide counter electrodes enhanced by a hydro-thermal treatment for use in platinum-free dye-sensitized solar cells. Mater Res Bull 68:9–15. https://doi.org/10.1016/j.materresbull.2015.03.015

    Article  CAS  Google Scholar 

  • Xiao Y, Wang C, Han G (2015b) Effects of thiourea concentration on electrocatalytic performances of nickel sulfide counter electrodes for use in dye-sensitized solar cells. Mater Res Bull 61:326–332. https://doi.org/10.1016/j.materresbull.2014.10.052

    Article  CAS  Google Scholar 

  • Xiao Y, Wu J, Yue G, Lin J, Huang M, Lan Z (2011) Low temperature preparation of a high performance Pt/SWCNT counter electrode for flexible dye-sensitized solar cells. Electrochim Acta 56:8545–8550

    Article  CAS  Google Scholar 

  • Yao F, Sun P, Sun X, Huang N, Ban X, Huang H, Wen D, Liu S, Sun Y (2016) One-step hydrothermal synthesis of ZnS-CoS microcomposite as low cost counter electrode for dye-sensitized solar cells. Appl Surf Sci 363:459–465. https://doi.org/10.1016/j.apsusc.2015.12.036

    Article  CAS  Google Scholar 

  • Yeh MH, Lin LY, Lee CP, Wei HY, Chen CY, Wu CG, Vittal R, Ho KC (2011) A composite catalytic film of PEDOT:PSS/TiN–NPs on a flexible counter-electrode substrate for a dye-sensitized solar cell. J Mater Chem 21:19021–19029

    Article  CAS  Google Scholar 

  • Yin L, Wang L, Liu X, Gai Y, Su L, Qu B, Gong L (2015) Ultra-fast microwave synthesis of 3D flower-like Co9S8 hierarchical architectures for high-performance supercapacitor applications. Eur J Inorg Chem 2015:2457–2462. https://doi.org/10.1002/ejic.201500120

    Article  CAS  Google Scholar 

  • Yun S, Hagfeldt A, Ma T (2014) Pt-free counter electrode for dye-sensitized solar cells with high efficiency. Adv Mater 26:6210–6237. https://doi.org/10.1002/adma.201402056

    Article  CAS  Google Scholar 

  • Zhang C, Deng L, Zhang P, Ren X, Li Y, He T (2017) Electrospun FeS nanorods with enhanced stability as counter electrodes for dye-sensitized solar cells. Electrochim Acta 229:229–238

    Article  CAS  Google Scholar 

  • Zheng L, Bao C, Lei S, Wang J, Li F, Sun P, Huang N, Fang L, Sun X (2018) In situ growing CNTs encapsulating nickel compounds on Ni foils with ethanol flame method as superior counter electrodes of dye-sensitized solar cells. Carbon 133:423–434. https://doi.org/10.1016/j.carbon.2018.03.062

    Article  CAS  Google Scholar 

  • Zheng L, Sun X, Chen L, Bao C, Luo W, Huang N, Sun P, Sun Y, Fang L, Wang L (2016) One-step in situ growth of Co9S8 on conductive substrate as an efficient counter electrode for dye-sensitized solar cells. J Mater Sci 51:4150–4159. https://doi.org/10.1007/s10853-016-9738-5

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant No. 51602175 and 51602176), the Natural Science Foundation of Hubei Province (Grant No. 2016CFB151), and the Foundation of Key Laboratory of new building energy and building efficiency, Guangxi Province, China (Grant No. 18-J-22-2).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiangping Huang or Xiaohua Sun.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOC 444 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Wang, J., Zheng, L. et al. One-step in situ growing CoS1.097 nanoplates on flexible graphite paper as efficient and stable FTO-free counter electrodes for dye-sensitized solar cells. J Nanopart Res 21, 123 (2019). https://doi.org/10.1007/s11051-019-4553-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-019-4553-y

Keywords

Navigation