Skip to main content
Log in

Catalyst-free, tunable doping content of graphitic-N in arc-discharged graphene via gas and solid nitrogen sources and their formation mechanisms

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Facile, cost-effective, and catalyst-free synthesis of graphitic-nitrogen (graphitic-N) doping in arc-discharged graphene has been achieved via a gas (N2) nitrogen source. The N-doped graphene sheets are mainly of 2–5 layers. According to the growth mechanisms of the cathode-part (deposit) graphene during the arcing process, N2 exhibits a varying capability to form the graphitic-N doping. When N2 acts as the nitrogen source, the cathode-part deposit is mainly consist of graphitic-N graphene sheets. The content of the nitrogen atom is calculated to be ~ 2.88 at%. However, when melamine is used as a nitrogen source, the atomic percentage (AP) of graphitic-N doping is almost equal to the pyridinic- and pyrrolic-N doping in the cathode-part deposit. Based on the findings, a new growth mechanism of graphitic-N doping in arc graphene is rationally proposed. The electrochemical impedance spectroscopy (EIS) results suggest that the graphite-N doping on the graphene can decrease the electron transfer resistance (Rct) and have better electrical conductivity than the normal N-doped graphene (N-NDG).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Bunch JS, Verbridge SS, Frank IW, Tanenbaum DM, Parpia JM, Craighead HG et al (2007) Electromechanical resonators from graphene sheets. Science 315:490–493

    Article  CAS  Google Scholar 

  • Burke AJ (2000) Ultracapacitors: why, how, and where is the technology. Power Sources 91:37–50

    Article  CAS  Google Scholar 

  • Chen YN, Zhao HB, Sheng LM, Yu LM, An K, Xu J, Ando Y, Zhao X (2012) Mass-production of highly-crystalline few-layer graphene sheets by arc discharge in various H2–inert gas mixtures. Chem Phys Lett 538:72–76

    Article  CAS  Google Scholar 

  • Cho HJ, Oh IS, Kang JH, Park SC, Ku B, Park M, Kwak SJ, Khanra P, Lee JH, Kim MJ et al (2014) Catalyst and doping methods for arc graphene. Nanotechnology 25:445601–445608

    Article  Google Scholar 

  • Das A, Pisana S, Chakraborty B, Piscanec S, Saha SK, Waghmare UV, Novoselov KS, Krishnamurthy HR, Geim AK, Ferrari AC, Sood AK (2008) Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. Nat Nanotechnol 3:210–215

    Article  CAS  Google Scholar 

  • Dey S, Govindaraj A, Biswas K, Rao CNR et al (2014) Luminescence properties of boron and nitrogen doped graphene quantum dots prepared from arc-discharge-generated doped graphene samples. Chem Phys Lett 595:203–208

    Article  Google Scholar 

  • Gilje S, Han S, Wang M et al (2007) A chemical route to graphene for device applications. Nano Lett 1:3394–3398

    Article  Google Scholar 

  • Guan L, Cui L, Lin K, Wang YY, Wang XT, Jin FM, He F, Chen XP, Cui S et al (2011) Preparation of few-layer nitrogen-doped graphene nanosheets by DC arc discharge under nitrogen atmosphere of high temperature. Appl Phys A Mater Sci Process 102:289–294

    Article  CAS  Google Scholar 

  • Gupta V (2010) Graphene as intermediate phase in fullerene and carbon nanotube growth: a young–Laplace surface-tension model. Appl Phys Lett 97:181910

    Article  Google Scholar 

  • Heersche H, Jarilloherrero P, Oostinga J et al (2007) Induced superconductivity in graphene. Solid State Commun 143:72–76

    Article  CAS  Google Scholar 

  • Huang LP, Wu B, Chen JY, Xue YZ, Geng DC, Guo YL, Yu G, Liu Y (2013) Gram-scale synthesis of graphene sheets by a catalytic arc-discharge method. Small 9:1330–1335

    Article  CAS  Google Scholar 

  • Imran JR, Rajalakshmi N, Dhathathreyan KS, Ramaprabhu S et al (2015) Nitrogen doped graphene prepared by hydrothermal and thermal solid state methods as catalyst supports for fuel cell. Int J Hydrog Energy 40:4337–4348

    Article  Google Scholar 

  • Jeong HM, Lee JW, Shin WH, Choi YJ, Shin HJ, Kang JK, Choi JW et al (2011) Nitrogen-doped graphene for high-performance ultracapacitors and the importance of nitrogen-doped sites at basal planes. Nano Lett 11:2472–2474

    Article  CAS  Google Scholar 

  • Kapteijn F, Moulijn JA, Matzner S, Boehm HP et al (1999) The development of nitrogen functionality in model chars during gasification in CO2 and O2. Carbon 37:1143–1150

    Article  CAS  Google Scholar 

  • Kastner J, Pichler T, Kuzmany H, Curran S, Blau W, Weldon DN, Delamesiere M, Draper S, Zandbergen H (1994) Resonance Raman and infrared spectroscopy of carbon nanotubes. Chem Phys Lett 221:53–58

    Article  CAS  Google Scholar 

  • Kim WY, Kim KS et al (2008) Prediction of very large values of magnetoresistance in a graphene nanoribbon device. Nat Nanotechnol 3:408–412

    Article  CAS  Google Scholar 

  • Kim KS, Zhao Y, Jang H, Lee SY, Kim JM, Kim KS, Ahn JH, Kim P, Choi JY, Hong BH (2009) Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457:706–710

    Article  CAS  Google Scholar 

  • Kumar R, Singh RK, Dubey PK, Kumar P, Tiwari RS, Oh IK (2013) Pressure-dependent synthesis of high-quality few-layer graphene by plasma-enhanced arc discharge and their thermal stability. J Nanopart Res 15:1847

    Article  Google Scholar 

  • Lee YH, Lee YF, Chang KH, Hu CC et al (2011) Synthesis of N-doped carbon nanosheets from collagen for electrochemical energy storage/conversion systems. Electrochem Commun 13:50–53

    Article  CAS  Google Scholar 

  • Li YL, Kuan CF, Chen CH, Kuan HC, Yi MC, Chiu SL et al (2012) Preparation, thermal stability and electrical properties of PMMA/functionalized graphene oxide nanosheets composites. Mater Chem Phys 134:677–685

    Article  CAS  Google Scholar 

  • Li X, Rong JP, Wei BQ (2011) Electrochemical behavior of single-walled carbon nanotube supercapacitors under compressive stress. ACS Nano 4:6039–6049

    Article  Google Scholar 

  • Li B, Song XL, Zhang P (2014) Raman-assessed structural evolution of as-deposited few-layer graphene by He/H2 arc discharge during rapid-cooling thinning treatment. Carbon 66:426–435

    Article  CAS  Google Scholar 

  • Li N, Wang ZY, Zhao KK, Shi ZJ, Gu ZN, Xu SK et al (2010) Large scale synthesis of N-doped multi-layered graphene sheets by simple arc-discharge method. Carbon 48:255–259

    Article  CAS  Google Scholar 

  • Li SM, Yang SY, Wang YS, Tsai HP, Tien HW, Hsiao ST, Liao WH, Chang CL, Ma CCM, Hu CC (2015) N-doped structures and surface functional groups of reduced graphene oxide and their effect on the electrochemical performance of supercapacitor with organic electrolyte. J Power Sources 278:218–229

    Article  CAS  Google Scholar 

  • Liu L, Ryu SM, Tomasik MR, Stolyarova E, Jung N, Hybertsen MS, Steigerwald ML, Brus LE, Flynn GW (2008) Graphene oxidation: thickness-dependent etching and strong chemical doping. Nano Lett 8:1965–1970

    Article  CAS  Google Scholar 

  • Lucchese MM, Stavale F, Ferreira EHM, Vilani C, Moutinho MVO, Capaz RB, Achete CA, Jorio A (2010) Quantifying ion-induced defects and Raman relaxation length in graphene. Carbon 48:1592–1597

    Article  CAS  Google Scholar 

  • Luo J, Jiang SS, Zhang HY, Jiang JQ, Liu XY et al (2012) A novel non-enzymatic glucose sensor based on Cu nanoparticle modified graphene sheets electrode. Anal Chim Acta 709:47–53

    Article  CAS  Google Scholar 

  • Malard LM, Pimenta MA, Dresselhaus G, Dresselhaus MS (2009) Raman spectroscopy in graphene. Phys Rep 473:51–87

    Article  CAS  Google Scholar 

  • Ni ZH, Wang YY, Yu T, Shen ZX et al (2008) Raman spectroscopy and imaging of graphene. Nano Res 1:273–291

    Article  CAS  Google Scholar 

  • Nishino AJ (1996) Capacitors: operating principles, current market and technical trends. Power Sources 60:137–147

    Article  CAS  Google Scholar 

  • Niwa H, Horiba K, Harada Y, Oshima M, Ikeda T, Terakura K, Ozaki J, Miyata S et al (2009) X-ray absorption analysis of nitrogen contribution to oxygen reduction reaction in carbon alloy cathode catalysts for polymer electrolyte fuel cells. J Power Sources 187:93–97

    Article  CAS  Google Scholar 

  • Park N, Hong S, Kim G, Jhi SH (2007) Computational study of hydrogen storage characteristics of covalent-bonded graphenes. J Am Chem Soc 129:8999–9003

    Article  CAS  Google Scholar 

  • Qiu YC, Zhang XF, Yang SH et al (2011) High performance supercapacitors based on highly conductive nitrogen-doped graphene sheets. Phys Chem Chem Phys 13:12554–12558

    Article  CAS  Google Scholar 

  • Rao CNR, Gopalakrishnan K, Govindaraj A et al (2014) Synthesis, properties and applications of graphene doped with boron, nitrogen and other elements. Nano Today 9:324–343

    Article  CAS  Google Scholar 

  • Reina A, Jia X, Ho J, Nezich D, Son H, Bulovic V, Dresselhaus MS, Kong J (2009) Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett 9:30–35

    Article  CAS  Google Scholar 

  • Saidane K, Razafinimanana M, Lange H, Huczko A, Baltas M, Gleizes A et al (2004) Fullerene synthesis in the graphite electrode arc process: local plasma characteristics and correlation with yield. J Phys D Appl Phys 37:232–239

    Article  CAS  Google Scholar 

  • Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen SBT, Ruoff RS (2006) Graphene-based composite materials. Nature 442:282–286

    Article  CAS  Google Scholar 

  • Sun L, Tian CG, Li MT, Meng XY, Wang L, Wang RH, Yin J, Fu HG (2013) From coconut shell to porous graphene-like nanosheets for high-power super- capacitors. J Mater Chem A 21:6462–6470

    Article  Google Scholar 

  • Wang DW, Gentle IR, Lu GQ et al (2010) Enhanced electrochemical sensitivity of PtRh electrodes coated with nitrogen-doped graphene. Electrochem Commun 12:1423–1427

    Article  CAS  Google Scholar 

  • Wei DC, Liu YQ, Wang Y, Zhang H, Huang L, Yu G et al (2009) Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties. Nano Lett 9:1752–1758

    Article  CAS  Google Scholar 

  • Yang SY, Chang KH, Tien HW, Lee YF, Li SM, Wang YS, Wang JY, Ma CCM, Hu CC (2011) Design and tailoring of a hierarchical graphene-carbon nanotube architecture for supercapacitors. J Mater Chem 21:2374–2380

    Article  CAS  Google Scholar 

  • Yoo E, Kim J, Hosono E, Zhou H, Kudo T, Honma I (2008) Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries. Nano Lett 8:2277–2282

    Article  CAS  Google Scholar 

  • Zhang Y, Tan YW, Stormer HL, Kim P (2005) Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438:201–204

    Article  CAS  Google Scholar 

  • Zhou CW, Kong J, Yenilmez E, Dai HJ et al (2000) Modulated chemical doping of individual carbon nanotubes. Science 290:1552–1555

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the Natural Science Foundation of Shannxi Province and the Doctoral Research Assistant Foundation of Xi’an Jiaotong University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaolong Song.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nan, Y., Li, B., Zhang, X. et al. Catalyst-free, tunable doping content of graphitic-N in arc-discharged graphene via gas and solid nitrogen sources and their formation mechanisms. J Nanopart Res 20, 274 (2018). https://doi.org/10.1007/s11051-018-4375-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-018-4375-3

Keywords

Navigation