Skip to main content
Log in

Hyaluronic acid-coated liposome for active targeting on CD44 expressing tumors

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Liposome coated with hyaluronic acid (HA) was fabricated for targeted delivery of Doxorubicin hydrochloride (DOX) to CD44 expressing tumors. DOX was incorporated into liposome (DOX-L) via a transmembrane pH-gradient method, which contributed to high encapsulation efficiency (97%) and drug loading (19%). HA was modified on the surface of DOX-L by simple vortex (HA-DOX-L). The average diameter of optimized DOX-L and H-DOX-L was 109.7 ± 3.1 and 117.2 ± 5.0 nm, respectively, with good uniformity and stability during 6-month storage. SAXS and TEM evidenced the corona of HA on the surface of DOX-L, which convinced the prolonged circulation of DOX. The apoptosis study demonstrated the improved efficacy of HA-DOX-L with the human colon cancer cell line HCT-116 cells in comparison to the conventional reservoirs. This improved efficacy of HA-DOX-L with HCT-116 cells should be related with the interaction between HA and CD44 receptor of HCT-116 cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Anabousi S, Laue M, Lehr CM, Bakowsky U, Ehrhardt C (2005) Assessing transferrin modification of liposomes by atomic force microscopy and transmission electron microscopy. Eur J Pharm Biopharm 60:295–303

    Article  CAS  Google Scholar 

  • Andresen TL, Jensen SS, Gensen KJ (2005) Advanced strategies in liposomal cancer therapy: problems and prospects of active and tumor specific drug release. Prog Lipid Res 44:68–97

    Article  CAS  Google Scholar 

  • Angelova A, Fajolles C, Hocquelet C, Djedaïni-Pilard F, Lesieur S, Bonnet V, Perly B, Lebas G, Mauclaire L (2008) Physico-chemical investigation of asymmetrical peptidolipidyl-cyclodextrins. J Colloid Interface Sci 322:304–314

    Article  CAS  Google Scholar 

  • Bourguignon LYW, Singleton PA, Zhu HB, Zhou B (2002) Hyaluronan promotes signaling interaction between CD44 and the transforming growth factor beta receptor I in metastatic breast tumor cells. J Biol Chem 277:39703–39712

    Article  CAS  Google Scholar 

  • Chen YY, Angelova A, Angelov B, Drechsler M, Garamus VM, Willumeit-RÖmere R, Zou AH (2015) Sterically stabilized spongosomes for multidrug delivery of anticancer nanomedicines. J Mater Chem B 3:7734–7744

    Article  CAS  Google Scholar 

  • Csoka AB, Frost GI, Stern R (2001) The six hyaluronidase-like genes in the human and mouse genomes. Matrix Biol 20:499–508

    Article  CAS  Google Scholar 

  • Cullis PR, Bally MB, Madden TD, Mayer LD, Hope MJ (1991) pH gradients and membrane transport in liposomal systems. Trends Biotechnol 9:268–272

    Article  CAS  Google Scholar 

  • Dong J, Jiang DH, Wang Z, Wu GZ, Miao LY, Huang LX (2013) Intra-articular delivery of liposomal celecoxib–hyaluronate combination for the treatment of osteoarthritis in rabbit model. Int J Pharm 441:285–290

    Article  CAS  Google Scholar 

  • Fan YC, Du WW, He B, Fu FY, Yuan L, Wu HN, Dai WB, Zhang H, Wang XQ, Wang JC, Zhang X, Zhang Q (2013) The reduction of tumor interstitial fluid pressure by liposomal imatinib and its effect on combination therapy with liposomal doxorubicin. Biomaterial 34:2277–2288

    Article  CAS  Google Scholar 

  • Ferrer-Tasies L, Moreno-Calvo E, Cano-Sarabia M, Aguilella-Arzo M, Angelova A, Lesieur S, Ricart S, Faraudo J, Ventosa N, Veciana J (2013) Quatsomes: vesicles formed by self-assembly of sterols and quaternary ammonium surfactants. Langmuir 29:6519–6528

    Article  CAS  Google Scholar 

  • Guo GN, Liu W, Liang JG, He ZK, Xu HB, Yang XL (2007) Probing the cytotoxicity of CdSe quantum dots with surface modification. Mater Lett 61:1641–1644

    Article  CAS  Google Scholar 

  • Hayashi K, Tatsui T, Shimanouchi T, Umakoshi H (2013) Enhanced cytotoxicity for Colon 26 cells using doxorubicin-loaded Sorbitan Monooleate (span 80) vesicles. Int J Biol Sci 9:142–148

    Article  CAS  Google Scholar 

  • Kaddah S, Khreich N, Kaddah F, Charcosset C, Greige-Gerges H (2018) Cholesterol modulates the liposome membrane fluidity and permeability for a hydrophilic molecule. Food Chem Toxicol 113:40–48

    Article  CAS  Google Scholar 

  • Kim E, Yang J, Park J, Kim S, Kim NH, Yook JI, Suh JS, Haam S, Huh YM (2012) Consecutive targetable smart nanoprobe for molecular recognition of cytoplasmic microRNA in metastatic breast cancer. ACS Nano 6:8525–8535

    Article  CAS  Google Scholar 

  • Li F, Yang R, Weng Y, Tang X (2009) Preparation and evaluation of lyophilized liposome-encapsulated bufadienolides. Drug Dev Ind Pharm 35:1048–1058

    Article  CAS  Google Scholar 

  • Montero MT, MartÍ A, Hernàndez-Borrell J (1993) The active trapping of doxorubicin in liposomes by pH gradient: photon correlation spectroscopy and fluorimetric study. Int J Pharm 96:157–165

    Article  CAS  Google Scholar 

  • Nakamura K, Yoshino K, Yamashita K, Kasukawa H (2012) Designing a novel in vitro drug-release-testing method for liposomes prepared by pH-gradient method. Int J Pharm 430:381–387

    Article  CAS  Google Scholar 

  • Negi LM, Jaggi M, Joshi V, Ronodip K, Talegaonkar S (2015) Hyaluronan coated liposomes as the intravenous platform for delivery of imatinib mesylate in MDR colon cancer. Int J Biol Macromol 73:222–235

    Article  CAS  Google Scholar 

  • Nielsen SS, Toft KN, Snakenborg D, Jeppesen MG, Jacobsen JK, Vestergaard B, Kutter JP, Arleth L (2009) BioXTAS RAW, a software program for high-throughput automated small-angle X-ray scattering data reduction and preliminary analysis. J Appl Crystallogr 42:959–964

    Article  CAS  Google Scholar 

  • Paliwal SR, Paliwal R, Agrawal GP, Vyas SP (2011) Liposomal nanomedicine for breast cancer therapy. Nanomedicine 6:1085–1100

    Article  CAS  Google Scholar 

  • Park JH, Cho HJ, Yoon HY, Yoon IS, Ko SH, Shim JS, Cho JH, Park JH, Kimh K, Kwon IC, Kima DD (2014) Hyaluronic acid derivative-coated nanohybrid liposomes for cancer imaging and drug delivery. J Control Release 174:98–108

    Article  CAS  Google Scholar 

  • Peer D, Margalit R (2004) Tumor-targeted hyaluronan nanoliposomes increase the antitumor activity of liposomal doxorubicin in syngeneic and human xenograft mouse tumor models. Neoplasia 6:343–353

    Article  CAS  Google Scholar 

  • Rahman YE, Cerny EA, Tollaksen SL, Wright BJ, Nance SL, Thomson JF (1974) Liposome-encapsulated actinomycin D: potential in cancer chemotherapy. Exp Biol Med 146:1173–1176

    Article  CAS  Google Scholar 

  • Silvia A, Carlotta L, Elisa DP, Chiara C, Nicolas T, Barbara S, Massimo D, Ilaria D, Elias F, Luigi C, Marta P (2013) Hyaluronic acid-coated liposomes for active targeting of gemcitabine. Eur J Pharm Biopharm 85:373–380

    Article  Google Scholar 

  • Toole BP (2004) Hyaluronan: from extracellular glue to pericellular cue. Nat Rev Cancer 4:528–539

    Article  CAS  Google Scholar 

  • Wu W, Zhang QJ, Wang JT, Chen M, Li S, Lin ZF, Li JS (2014) Tumor-targeted aggregation of pH-sensitive nanocarriers for enhanced retention and rapid intracellular drug release. Polym Chem 5:5668–5679

    Article  CAS  Google Scholar 

  • Yang XY, Li YX, Li M, Zhang L, Feng LX, Zhang N (2013) Hyaluronic acid-coated nanostructured lipid carriers for targeting paclitaxel to cancer. Cancer Lett 334:338–345

    Article  CAS  Google Scholar 

  • Zhang J, Chen XG, Li YY, Liu CS (2007) Self-assembled nanoparticles based on hydrophobically modified chitosan as carriers for doxorubicin. Nanomedicine 3:258–265

    Article  CAS  Google Scholar 

  • Zhang WL, Wang GJ, Falconer JR, Baguley BC, Shaw JP, Liu JP, Xu HT, See E, Sun JG, Aa J, Wu ZM (2014) Strategies to maximize liposomal drug loading for a poorly water-soluble anticancer. Drug Pharm Res 32:1451–1461

    Article  Google Scholar 

  • Zöller M (2011) CD44: can a cancer-initiating cell profit from an abundantly expressed molecule? Nat Rev Cancer 11:254–267

    Article  Google Scholar 

  • Zong T, Ling M, Gao H, Wei C, Zhu P, Shi K, Chen J, Yang W, Gao F, Qin H (2014) Synergistic dual-ligand doxorubicin liposomes improve targeting and therapeutic efficacy of brain glioma in animals. Mol Pharm 11:2346–2357

    Article  CAS  Google Scholar 

Download references

Funding

This study was funded by National Natural Science Foundation of China (Grant number 21573070). We thank the staff of BL19U2 beamline at National Center for Protein Science Shanghai and Shanghai Synchrotron Radiation Facility (Shanghai, People’s Republic of China) for assistance during data collection.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aihua Zou.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(PDF 329 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, Z., Liu, J., Li, N. et al. Hyaluronic acid-coated liposome for active targeting on CD44 expressing tumors. J Nanopart Res 20, 235 (2018). https://doi.org/10.1007/s11051-018-4324-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-018-4324-1

Keywords

Navigation