Skip to main content
Log in

Plasmonics and SERS activity of post-transition metal nanoparticles

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Nanoparticles of the post-transition metals, In, Sn, Pb, and Bi, and of the metalloid Sb were produced by laser ablation synthesis in solution (LASiS) and tested for localized surface plasmon resonances (LSPR) and surface-enhanced Raman scattering (SERS). The nanoparticles were characterized by UV-Vis optical absorption, dynamic light scattering (DLS), and transmission electron microscopy (TEM). Several organic and biological molecules were tested, and SERS activity was demonstrated for all tested nanoparticles and molecules. The Raman enhancement factor for each nanoparticle class and molecule was experimentally determined. The search for new plasmonic nanostructures is important mainly for life sciences-related applications and this study expands the range of SERS active systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alcaraz de la Osa R, Sanz JM, Barreda AI, Saiz JM, González F, Everitt HO, Moreno F (2015) Rhodium tripod stars for UV plasmonics. J Phys Chem C 119:12572–12580

    Article  Google Scholar 

  • American Mineralogist Crystal Structure Database (2017a) Antimony oxide Sb2O3 Database Code 0009536 accessed Dec. 22nd 2017 http://rruff.geo.arizona.edu/AMS/minerals/Senarmontite

  • American Mineralogist Crystal Structure Database (2017b) Bismuth Database Code 0011254 http://rruff.geo.arizona.edu/AMS/minerals/Bismuth accessed Dec 22nd 2017

  • American Mineralogist Crystal Structure Database (2017c) Indium Database Code 0014125 http://rruff.geo.arizona.edu/AMS/minerals/Indium accessed Dec 22nd 2017

  • American Mineralogist Crystal Structure Database (2017d) Lead Database Code 0011154 http://rruff.geo.arizona.edu/AMS/minerals/Lead accessed Dec 22nd 2017

  • American Mineralogist Crystal Structure Database (2017e) Tin Database Code 0011248 http://rruff.geo.arizona.edu/AMS/minerals/Tin accessed Dec 22nd 2017

  • Ashcroft NW, Lawrence WE (1968) Fermi surface and electronic structure of indium. Phys Rev 175:938–955

    Article  Google Scholar 

  • Berg RW (2015) Investigation of L(+)-ascorbic acid with Raman spectroscopy in visible and UV light. Appl Spectrosc Revs 50:193–239

    Article  Google Scholar 

  • Bezerra AG Jr, Cavassin P, Machado TN, Woiski TD, Caetano R, Schreiner WH (2017) Surface enhanced Raman scattering using bismuth nanoparticles: a study with amino acids. J Nanopart Res 19:362–369

    Article  Google Scholar 

  • Binnemans K (2015) Interpretation of europium(III) spectra. Coord Chem Rev 295:1–45

    Article  Google Scholar 

  • Bose S, García-García AM, Ugeda MM, Urbina JD, Michaelis CH, Brihuega I, Kern K (2010) Observation of shell effects in superconducting nanoparticles of Sn. Nature Mater 9:550–554

    Article  Google Scholar 

  • Büchel D, Mihalcea C, Fukaya T, Atoda N, Tominaga J, Kikukawa T, Fuji H (2001) Sputtered silver oxide layers for surface-enhanced Raman spectroscopy. Appl Phys Lett 79:620–622

    Article  Google Scholar 

  • Carotenuto G, Hison CL, Capezzuto F, Palomba M, Perlo P, Conte P (2009) Synthesis and thermoelectric characterization of bismuth nanoparticles. J Nanopart Res 11:1729–1738

    Article  Google Scholar 

  • Chuang C-H, Chena Y-T (2009) Raman scattering of L-tryptophan enhanced by surface plasmon of silver nanoparticles: vibrational assignment and structural determination. J Raman Spectrosc 40:150–156

    Article  Google Scholar 

  • Creighton JA, Eadon DG (1991) Ultraviolet-visible absorption spectra of the colloidal metallic elements. J Chem Soc Faraday Trans 87:3881–3891

    Article  Google Scholar 

  • D’Aléo A, Pompidor G, Elena B, Vicat J, Baldeck PL, Toupet L, Kahn R, Andraud C, Maury O (2007) Two-photon microscopy and spectroscopy of lanthanide bioprobes. ChemPhysChem 8:2125–2132

    Article  Google Scholar 

  • Devasenathipathy R, Mani V, Chen S-M (2014) Highly selective amperometric sensor for the trace level detection of hydrazine at bismuth nanoparticles decorated graphene nanosheets modified electrode. Talanta 124:43–51

    Article  Google Scholar 

  • Fabris L (2016) SERS tags: the next promising tool for personalized cancer detection? ChemNanoMat 2:249–258

    Article  Google Scholar 

  • Falicov LM, Lin PJ (1966) Band structure and Fermi surface of antimony: pseudopotential approach. Phys Rev 141:562–567

    Article  Google Scholar 

  • Feng S, Chen W, Huang W, Cheng M, Lin J, Li Y, Chen R (2009) Surface-enhanced Raman spectroscopy of morphine in silver colloid. Chin Opt Lett 7:1055–1057

    Article  Google Scholar 

  • Fleischmann M, Hendra PJ, McQuillan AJ (1974) Raman spectra of pyridine adsorbed at a silver electrode. Chem Phys Lett 26:163–166

    Article  Google Scholar 

  • Ganeev RA, Ryasnyanskiy AI, Chakravarty U, Naik PA, Srivastava H, Tiwari MK, Gupta PD (2007) Structural, optical, and nonlinear optical properties of indium nanoparticles prepared by laser ablation. Appl Phys B Lasers Opt 86:337–341

    Article  Google Scholar 

  • Gaspari GD, Das TP (1968) Band structure, fermi surface, and knight shift of indium metal. Phys Rev 167:660–669

    Article  Google Scholar 

  • George MR, Golden CA, Grossel MC, Curry RJ (2006) Modified dipicolinic acid ligands for sensitization of europium(III) luminescence. Inorg Chem 45:1739–1744

    Article  Google Scholar 

  • Gonze X, Michenaud J-P, Vigneron J-P (1990) First-principles study of As, Sb, and Bi electronic properties. Phys Rev B 41:11827–11836

    Article  Google Scholar 

  • Grzelczak M, Vermant J, Furst EM, Liz-Marzán LM (2010) Directed self-assembly of nanoparticles. ACS Nano 4:3591–3605

    Article  Google Scholar 

  • Gutiérrez Y, Ortiz D, Saiz JM, González F, Everitt HO, Moreno F (2017) The UV plasmonic behavior of distorted rhodium nanocubes. Nano 7:425. https://doi.org/10.3390/nano7120425

    Google Scholar 

  • Hernandez-Delgadillo R, Velasco-Arias D, Diaz D, Arevalo-Niño K, Garza-Enriquez M, De la Garza-Ramos MA, Cabral-Romero C (2012) Zerovalent bismuth nanoparticles inhibit Streptococcus mutans growth and formation of biofilm. Int J Nanomedicine 7:2109–2113

    Google Scholar 

  • Hofmann PH (2006) The surfaces of bismuth: structural and electronic properties. Prog Surf Sci 81:191–245

    Article  Google Scholar 

  • Horn K, Reihl B, Zartner A, Eastman DE, Hermann K, Noffke J (1984) Electronic energy bands of lead: angle-resolved photoemission and band-structure calculations. Phys Rev B 30:1711–1719

    Article  Google Scholar 

  • Jiang N, Zhuo X, Wang J (2017) Active plasmonics: principles, structures, and applications. Chem Rev 118:3054–3099. https://doi.org/10.1021/acs.chemrev.7b00252

    Article  Google Scholar 

  • Jo YH, Jung I, Choi CS, Kim I, Lee HM (2011) Synthesis and characterization of low temperature Sn nanoparticles for the fabrication of highly conductive ink. Nanotechnology 22:225701 (8pp)

    Article  Google Scholar 

  • Ju Y, Tasaka T, Yamauchi H, Nakagawa T (2015) Synthesis of Sn nanoparticles and their size effect on the melting point. Microsyst Technol 21:1849–1854

    Article  Google Scholar 

  • Kandakkathara A, Utkin I, Fedosejevs R (2011) Surface-enhanced Raman scattering (SERS) detection of low concentrations of tryptophan amino acid in silver colloid. Appl Spectrosc 65:507–513

    Article  Google Scholar 

  • Kiefer W (1995) Surface enhanced Raman scattering (SERS). In: Schrader B (ed) Infrared and Raman spectroscopy: methods and applications. VCH, Weinheim, pp 489–497

    Google Scholar 

  • Kneipp J, Kneipp H, Kneipp K (2008) SERS—a single-molecule and nanoscale tool for bioanalytics. Chem Soc Rev 37:1052–1060

    Article  Google Scholar 

  • Kudelski A, Grochala W, Janik-Czachor M, Bukowska J, Szummer A, Dolata M (1998) Surface enhanced Raman scattering (SERS) at copper(I) oxide. J Raman Spectrosc 29:431–435

    Article  Google Scholar 

  • Kumamoto Y, Taguchi A, Honda M, Watanabe K, Saito Y, Kawata S (2014) Indium for deep-UV surface enhanced resonance Raman scattering. ACS Photon 1:598–603

    Article  Google Scholar 

  • Lai SL, Guo JY, Petrova V, Ramanath G, Allen LH (1996) Size-dependent melting properties of small tin particles: Nanocalorimetric measurements. Phys Rev Lett 77:99–102

    Article  Google Scholar 

  • Lalisse A, Tessier G, Plain J, Baffou G (2015) Quantifying the efficiency of plasmonic materials for near-field enhancement and photothermal conversion. J Phys Chem C 119:25518–25528

    Article  Google Scholar 

  • Leordean C, Canpean V, Astilean S (2012) Surface-enhanced Raman scattering (SERS) analysis of urea trace in urine, fingerprint, and tear samples. Spectrosc Lett Int J Rapid Commun 45:550–555

    Article  Google Scholar 

  • Li Y-S (1994) Surface-enhanced Raman scattering at colloidal silver oxide surfaces. J Raman Spectrosc 25:795–797

    Article  Google Scholar 

  • Li W-H, Yang CC, Tsao FC, Lee KC (2003) Quantum size effects on the superconducting parameters of zero-dimensional Pb nanoparticles. Phys Rev B 68:184507 (6pp)

    Article  Google Scholar 

  • Li P-W, Zhang J, Zhang L, Mo Y-J (2009) Surface-enhanced Raman scattering and adsorption studies of morphine on silver island film. Vib Spectrosc 49:2–6

    Article  Google Scholar 

  • Ma D, Zhao J, Zhao Y, Hao X, Li L, Zhang L, Lua Y, Yu C (2012) Synthesis of bismuth nanoparticles and self-assembled nanobelts by a simple aqueous route in basic solution. Eng Asp 395:276–283

    Article  Google Scholar 

  • Maiti N, Thomas S, Jasmine A, Jacob JA, Chadha R, Mukherjee T, Kapoor S (2012) DFT and surface-enhanced Raman scattering study of tryptophan–silver complex. J Colloid Interface Sci 380:141–149

    Article  Google Scholar 

  • Marks H, Schechinger M, Garza J, Locke A, Coté G (2017) Surface enhanced Raman spectroscopy (SERS) for in vitro diagnostic testing at the point of care. Nano 6:681–701

    Google Scholar 

  • Mary YS, Ushakumari L, Harikumar LB, Varghese HT, Panicker CY (2009) FT-IR, FT-Raman and SERS spectra of L-proline. J Iran Chem Soc 6:138–144

    Article  Google Scholar 

  • Mayorga-Martinez CC, Cadevall M, Guix M, Ros J, Merkoci A (2013) Bismuth nanoparticles for phenolic compounds biosensing application. Biosens Bioelectron 40:57–62

    Article  Google Scholar 

  • McMahon JM, Schatza G, Gray SK (2013) Plasmonics in the ultraviolet with the poor metals Al, Ga, In, Sn, Tl, Pb, and Bi. Phys Chem Chem Phys 15:5415–5423

    Article  Google Scholar 

  • McNay G, Eustace D, Smith WE, Faulds K, Graham D (2011) Surface-enhanced Raman scattering (SERS) and surface-enhanced resonance Raman scattering (SERRS): a review of applications. Appl Spectrosc 65:825–837

    Article  Google Scholar 

  • Melendrez MF, Vargas-Hernández C (2013) Growth and morphology of tin nanoparticles obtained by the condensation of metal vapors. Rev Mex Fís 59:39–45

    Google Scholar 

  • Moskovits M (2005) Surface-enhanced Raman spectroscopy: a brief retrospective. J Raman Spectrosc 36:485–496

    Article  Google Scholar 

  • Panicker CY, Varghese HT, Philip D (2006) FT-IR, FT-Raman and SERS spectra of vitamin C. Spectrochim Acta A 65:802–804

    Article  Google Scholar 

  • Pavani KV, Sunil Kumar N, Sangameswaran BB (2012) Synthesis of lead nanoparticles by Aspergillus species. Polish. J Microbiol 61:61–63

    Google Scholar 

  • Procházka M (2015) Surface-enhanced Raman spectroscopy bioanalytical, biomolecular and medical applications. Springer International Publishing, Switzerland

    Google Scholar 

  • Ramírez-Rodríguez LP, Cortez-Valadez M, Bocarando-Chacon J-G, Arizpe-Chávez H, Flores-Acosta M, Velumani S, Ramírez-Bom R (2014) Plasmon resonance and Raman modes in Pb nanoparticles obtained in extract of opuntia ficus-indica plant. NANO 9:1450070 (5 pp)

    Article  Google Scholar 

  • Rana V, Canamares MV, Kubic T, Leona M, Lombardi JR (2011) Surface-enhanced Raman spectroscopy for trace identification of controlled substances: morphine, codeine, and hydrocodone. J Forensic Sci 56:201–207

    Article  Google Scholar 

  • Rosa RGT, Duarte CA, Schreiner WH, Mattoso NP, Bezerra AG Jr, Barison A, Ocampos FMM (2014) Structural, morphological and optical properties of Bi NPs obtained by laser ablation and their selective detection of L-cysteine. Colloids Surf A Physicochem Eng Asp 457:368–373

    Article  Google Scholar 

  • Roy A, Komatsu M, Matsuishi K, Onari S (1997) Raman spectroscopic studies on Sb nanoparticles in Si02 matrix prepared by rf-cosputtering technique. J Phys Chem Solids 58:741–747

    Article  Google Scholar 

  • Sabet S, Kaghazchi P (2014) Communication: nanosize-induced restructuring of Sn nanoparticles. J Chem Phys 140:191102 (4pp)

    Article  Google Scholar 

  • Sanz JM, Ortiz D, Alcaraz de la Osa R, Saiz JM, González F, Brown AS, Losurdo M, Everitt HO, Moreno F (2013) UV plasmonic behavior of various metal nanoparticles in the near and far-field regimes: geometry and substrate effects. J Phys Chem C 117:19606–19615

    Article  Google Scholar 

  • Sharma B, Frontiera RR, Henry A-I, Ringe E, Van Duyne RP (2012) SERS: materials applications, and the future. Mater Today 15:16–25

    Article  Google Scholar 

  • Singh P, Kumar S, Katyal A, Kalra R, Chandra R (2008) A novel route for the synthesis of indium nanoparticles in ionic liquid. Mater Lett 62:4164–4166

    Article  Google Scholar 

  • Sklyadneva IY, Heid R, Echenique PM, Bohnen K-B, Chulkov EV (2012) Electron-phonon interaction in bulk Pb: beyond the Fermi surface. Phys Rev B 85:155115 (6pp)

    Article  Google Scholar 

  • Soulantica K, Maisonnat A, Fromen M-C, Casanove M-J, Lecante P, Chaudret B (2001) Synthesis and self-assembly of monodisperse indium nanoparticles prepared from the organometallic precursor [In(η5-C5H5)]. Angew Chem Int Ed 40:448–451

    Article  Google Scholar 

  • Toudert J, Serna R, de Castro MJ (2012) Exploring the optical potential of nano-bismuth: tunable surface plasmon resonances in the near ultraviolet-to-near infrared range. J Phys Chem C 116:20530–20539

    Article  Google Scholar 

  • Toudert J, Serna R, Camps I, Wojcik J, Mascher P, Rebollar E, Ezquerra TA (2017) Unveiling the ar infrared-to-ultraviolet optical properties of bismuth for applications in plasmonics and nanophotonics. J Phys Chem C 121:3511–3521

    Article  Google Scholar 

  • Veith M, Mathur S, König P, Cavelius C, Biegler J, Rammo A, Huch V, Shen H, Schmid G (2004) Template-assisted ordering of Pb nanoparticles prepared from molecular-level colloidal processing. C R Chim 7:509–519

    Article  Google Scholar 

  • Wang YW, Hong BH, Lee JY, Kim J-S, Kim GH, Kim KS (2004) Antimony nanowires self-assembled from Sb nanoparticles. J Phys Chem B 108:16723–16726

    Article  Google Scholar 

  • Wang F, Tang R, Yu H, Patrick C, Gibbons PC, Buhro WE (2008) Size- and shape-controlled synthesis of bismuth nanoparticles. Chem Mater 20:3656–3662

    Article  Google Scholar 

  • Weisz G (1966) Band structure and Fermi surface of white tin. Phys Rev 149:504–518

    Article  Google Scholar 

  • Wu T, Kapitán J, Masek V, Bour P (2015) Detection of circularly polarized luminescence of a Cs-Eu III complex in Raman optical activity experiments. Angew Chem Int Ed 54:14933–14936

    Article  Google Scholar 

  • Wu T, Kessler J, Bour P (2016) Chiral sensing of amino acids and protein chelating with Eu(III) complexes by Raman optical activity spectroscopy. Phys Chem Chem Phys 18:23803–23811

    Article  Google Scholar 

  • Yamada H, Yamamoto Y (1983) Surface enhanced Raman scattering (SERS) of chemisorbed species on various kinds of metals and semiconductors. Surf Sci 134:71–90

    Article  Google Scholar 

  • Yang H, Irudayaraj J (2002) Rapid determination of vitamin C by NIR, MIR and FT-Raman techniques. J Pharm Pharmacol 54:1247–1255

    Article  Google Scholar 

  • Yang H, Li J, Lu X, Xi G, Yan Y (2013) Reliable synthesis of bismuth nanoparticles for heavy metal detection. Mater Res Bull 48:4718–4722

    Article  Google Scholar 

  • Zdetsis AD, Economou EM, Papaconstantopoulos DA (1980) Ab initio bandstructure of lead. J Phys F Metal Phys 10:1149–1156

    Article  Google Scholar 

  • Zhang P, Wang Y, He T, Zhang B, Wang X, Xin H, Liu F (1988) SERS of pyridine, 1,4-dioxane and 1-ethyl-3′-methyl-2-thiacyanine iodide adsorbed on α-Fe2O3 colloids. Chem Phys Lett 153:215–222

    Article  Google Scholar 

  • Zhang D, Gökce B, Barcikowski S (2017) Laser synthesis and processing of colloids: fundamentals and applications. Chem Rev 117:3990–4103

    Article  Google Scholar 

  • Zhao Y, Zhang Z, Dang H (2003) A novel solution route for preparing indium nanoparticles. J Phys Chem B 107:7574–7576

    Article  Google Scholar 

  • Zhao Y, Zhang Z, Dang H (2004a) A simple way to prepare bismuth nanoparticles. Mater Lett 58:790–793

    Article  Google Scholar 

  • Zhao Y, Zhang Z, Dang H (2004b) Fabrication and tribological properties of Pb nanoparticles. J Nanopart Res 6:47–51

    Article  Google Scholar 

  • Zhao Y, Liu J, Cao L, Wu Z, Zhang Z, Dang H (2006) Synthesis and characterization of Pb–Bi bimetal nanoparticles by solution dispersion. Mater Chem Phys 99:71–74

    Article  Google Scholar 

  • Zhong J, Ma X, Lu H, Wang X, Zhang S, Xiang W (2014) Preparation and optical properties of sodium borosilicate glasses containing Sb nanoparticles. J Alloys Comp 607:177–182

    Article  Google Scholar 

  • Zhou C-D, Gao Y-L, Yang B, Zhai Q-J (2010) Size-dependent melting properties of Sn nanoparticles by chemical reduction synthesis. Trans Nonferrous Metals Soc China 20:248–253

    Article  Google Scholar 

Download references

Acknowledgements

We thank Conselho de Desenvolvimento Científico e Tecnológico—CNPq, a Brazilian agency, for the support, and Centro de Microscopia Eletrônica da UFPR for the use of the TEM and the confocal Raman microscopes. We are grateful to Hospital Pequeno Príncipe for the donation of a sample of morphine sulfate for this study.

Funding

This study was funded partially with scholarships by Conselho de Desenvolvimento Científico e Tecnológico—CNPq.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. H. Schreiner.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(PDF 628 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bezerra, A.G., Machado, T.N., Woiski, T.D. et al. Plasmonics and SERS activity of post-transition metal nanoparticles. J Nanopart Res 20, 142 (2018). https://doi.org/10.1007/s11051-018-4249-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-018-4249-8

Keywords

Navigation