Skip to main content
Log in

Melting and solidification behavior of Cu/Al and Ti/Al bimetallic core/shell nanoparticles during additive manufacturing by molecular dynamics simulation

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Molecular dynamics (MD) simulations were performed to investigate the role of core volume fraction and number of fusing nanoparticles (NPs) on the melting and solidification of Cu/Al and Ti/Al bimetallic core/shell NPs during a superfast heating and slow cooling process, roughly mimicking the conditions of selective laser melting (SLM). One recent trend in the SLM process is the rapid prototyping of nanoscopically heterogeneous alloys, wherein the precious core metal maintains its particulate nature in the final manufactured part. With this potential application in focus, the current work reveals the fundamental role of the interface in the two-stage melting of the core/shell alloy NPs. For a two-NP system, the melting zone gets broader as the core volume fraction increases. This effect is more pronounced for the Ti/Al system than the Cu/Al system because of a larger difference between the melting temperatures of the shell and core metals in the former than the latter. In a larger six-NP system (more nanoscopically heterogeneous), the melting and solidification temperatures of the shell Al roughly coincide, irrespective of the heating or cooling rate, implying that in the SLM process, the part manufacturing time can be reduced due to solidification taking place at higher temperatures. The nanostructure evolution during the cooling of six-NP systems is further investigated.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Berendsen HJC, van Postma JPM, van Gunsteren WF et al (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81:3684–3690

    Article  Google Scholar 

  • Bochicchio D, Ferrando R (2013) Morphological instability of core-shell metallic nanoparticles. Phys Rev B 87:165435

    Article  Google Scholar 

  • Bremen S, Meiners W, Diatlov A (2012) Selective laser melting. Laser Tech J 9:33–38

    Article  Google Scholar 

  • Cai J, Ye YY (1996) Simple analytical embedded-atom-potential model including a long-range force for fcc metals and their alloys. Phys Rev B 54:8398–8410

    Article  Google Scholar 

  • Chaudhuri RG, Paria S (2012) Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications. Chem Rev 112:2373–2433

    Article  Google Scholar 

  • Cheng X-L, Zhang J-P, Zhang H, Zhao F (2013) Molecular dynamics simulations on the melting, crystallization, and energetic reaction behaviors of Al/Cu core-shell nanoparticles. J Appl Phys 114:84310

    Article  Google Scholar 

  • Daw MS, Baskes MI (1984) Embedded-atom method: derivation and application to impurities, surfaces, and other defects in metals. Phys Rev B 29:6443–6453

    Article  Google Scholar 

  • Frazier WE (2014) Metal additive manufacturing: a review. J Mater Eng Perform 23:1917–1928

    Article  Google Scholar 

  • Grünberger T, Domröse R (2015) Direct metal laser sintering. Laser Tech J 12:45–48

    Article  Google Scholar 

  • Gu DD, Meiners W, Wissenbach K, Poprawe R (2012) Laser additive manufacturing of metallic components: materials, processes and mechanisms. Int Mater Rev 57:133–164

    Article  Google Scholar 

  • Gu M, Xia X, Li X, Huang X, Chen L (2014) Microstructural evolution of the interfacial layer in the Ti–Al/Yb0. 6Co4Sb12 thermoelectric joints at high temperature. J Alloys Compd 610:665–670

    Article  Google Scholar 

  • Herzog D, Seyda V, Wycisk E, Emmelmann C (2016) Additive manufacturing of metals. Acta Mater 117:371–392

    Article  Google Scholar 

  • Hirel P (2015) Atomsk: a tool for manipulating and converting atomic data files. Comput Phys Commun 197:212–219

    Article  Google Scholar 

  • Huang R, Shao GF, Zeng, XM, Wen, YH (2014) Diverse melting modes and structural collapse of hollow bimetallic core-shell nanoparticles: A perspective from molecular dynamics simulations. Sci Rep 4:7051

  • Jiang A, Awasthi N, Kolmogorov AN, Setyawan W, Börjesson A, Bolton K, Harutyunyan AR, Curtarolo S (2007) Theoretical study of the thermal behavior of free and alumina-supported Fe-C nanoparticles. Phys Rev B 75:205426

    Article  Google Scholar 

  • Jiang S, Zhang Y, Gan Y, Chen Z, Peng H (2013) Molecular dynamics study of neck growth in laser sintering of hollow silver nanoparticles with different heating rates. J Phys D Appl Phys 46:335302

    Article  Google Scholar 

  • Joshi AM, Kumar A, Krishnan K, et al (2016) Powders for additive manufacturing

  • Kuntová Z, Rossi G, Ferrando R (2008) Melting of core-shell ag-Ni and ag-co nanoclusters studied via molecular dynamics simulations. Phys Rev B 77:205431

    Article  Google Scholar 

  • Langlois C, Li ZL, Yuan J et al (2012) Transition from core–shell to Janus chemical configuration for bimetallic nanoparticles. Nano 4:3381–3388

    Google Scholar 

  • Lopeandia AF, Rodriguez-Viejo J (2007) Size-dependent melting and supercooling of Ge nanoparticles embedded in a SiO2 thin film. Thermochim Acta 461:82–87

    Article  Google Scholar 

  • Naplocha K, Granat K (2009) Microwave activated combustion synthesis of porous Al–Ti structures for composite reinforcing. J Alloys Compd 486:178–184

    Article  Google Scholar 

  • Obielodan JO, Ceylan A, Murr LE, Stucker BE (2010) Multi-material bonding in ultrasonic consolidation. Rapid Prototyp J 16:180–188

    Article  Google Scholar 

  • Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117:1–19

    Article  Google Scholar 

  • Rapallo A, Olmos-Asar JA, Oviedo OA, Ludueña M, Ferrando R, Mariscal MM (2012) Thermal properties of Co/Au nanoalloys and comparison of different computer simulation techniques. J Phys Chem C 116:17210–17218

    Article  Google Scholar 

  • Rodrıguez-López JL, Montejano-Carrizales JM, José-Yacamán M (2003) Molecular dynamics study of bimetallic nanoparticles: the case of Au x Cu y alloy clusters. Appl Surf Sci 219:56–63

    Article  Google Scholar 

  • Slotwinski JA, Garboczi EJ, Stutzman PE, Ferraris CF, Watson SS, Peltz MA (2014) Characterization of metal powders used for additive manufacturing. J Res Natl Inst Stand Technol 119:460

    Article  Google Scholar 

  • Song P, Wen D (2010) Molecular dynamics simulation of a core− shell structured metallic nanoparticle. J Phys Chem C 114:8688–8696

    Article  Google Scholar 

  • Sun J, Simon SL (2007) The melting behavior of aluminum nanoparticles. Thermochim Acta 463:32–40

    Article  Google Scholar 

  • Takagi M (1954) Electron-diffraction study of liquid-solid transition of thin metal films. J Phys Soc Jpn 9:359–363

    Article  Google Scholar 

  • Wang J, Shin S (2017a) Sintering of multiple Cu–Ag core–shell nanoparticles and properties of nanoparticle-sintered structures. RSC Adv 7:21607–21617

    Article  Google Scholar 

  • Wang J, Shin S (2017b) Room temperature nanojoining of Cu-Ag core-shell nanoparticles and nanowires. J Nanopart Res 19:53

    Article  Google Scholar 

  • Wang J, Shin S, Hu A (2016a) Geometrical effects on sintering dynamics of Cu–Ag core–shell nanoparticles. J Phys Chem C 120:17791–17800

    Article  Google Scholar 

  • Wang Y-C, Engelhard MH, Baer DR, Castner DG (2016b) Quantifying the impact of nanoparticle coatings and nonuniformities on XPS analysis: gold/silver core–shell nanoparticles. Anal Chem 88:3917–3925

    Article  Google Scholar 

  • Wen Y-H, Huang R, Shao G-F, Sun S-G (2017) Thermal stability of Co–Pt and Co–Au core–shell structured nanoparticles: insights from molecular dynamics simulations. J Phys Chem Lett 8:4273–4278

    Article  Google Scholar 

  • Wolcott PJ, Sridharan N, Babu SS, Miriyev A, Frage N, Dapino MJ (2016) Characterisation of Al–Ti dissimilar material joints fabricated using ultrasonic additive manufacturing. Sci Technol Weld Join 21:114–123

    Article  Google Scholar 

  • Xiong S, Qi W, Huang B et al (2011) Size-and temperature-induced phase transformations of titanium nanoparticles. EPL Europhys Lett 93:66002

    Article  Google Scholar 

  • Xu WF, Liu JH, Chen DL (2011) Material flow and core/multi-shell structures in a friction stir welded aluminum alloy with embedded copper markers. J Alloys Compd 509:8449–8454

    Article  Google Scholar 

  • Yang Z, Yang X, Xu Z (2008) Molecular dynamics simulation of the melting behavior of Pt− Au nanoparticles with core− shell structure. J Phys Chem C 112:4937–4947

    Article  Google Scholar 

  • Yu X, Li J, Shi T, Cheng C, Liao G, Fan J, Li T, Tang Z (2017) A green approach of synthesizing of Cu-Ag core-shell nanoparticles and their sintering behavior for printed electronics. J Alloys Compd 724:365–372

    Article  Google Scholar 

  • Zhang J-P, Zhang Y-Y, Wang E-P, Tang CM, Cheng XL, Zhang QH (2016) Size effect in the melting and freezing behaviors of Al/Ti core-shell nanoparticles using molecular dynamics simulations. Chin Phys B 25:36102

    Article  Google Scholar 

  • Zhou XW, Wadley HNG, Johnson RA, Larson DJ, Tabat N, Cerezo A, Petford-Long AK, Smith GDW, Clifton PH, Martens RL, Kelly TF (2001) Atomic scale structure of sputtered metal multilayers. Acta Mater 49:4005–4015

    Article  Google Scholar 

  • Zhou XW, Johnson RA, Wadley HNG (2004) Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers. Phys Rev B 69:144113

    Article  Google Scholar 

  • Zope RR, Mishin Y (2003) Interatomic potentials for atomistic simulations of the Ti-Al system. Phys Rev B 68:24102

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sasan Nouranian.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahmani, F., Jeon, J., Jiang, S. et al. Melting and solidification behavior of Cu/Al and Ti/Al bimetallic core/shell nanoparticles during additive manufacturing by molecular dynamics simulation. J Nanopart Res 20, 133 (2018). https://doi.org/10.1007/s11051-018-4237-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-018-4237-z

Keywords

Navigation