Single-layer graphdiyne-covered Pt(111) surface: improved catalysis confined under two-dimensional overlayer

  • Xi Chen
  • Zheng-Zhe Lin
Research Paper


In recent years, two-dimensional confined catalysis, i.e., the enhanced catalytic reactions in confined space between metal surface and two-dimensional overlayer, makes a hit and opens up a new way to enhance the performance of catalysts. In this work, graphdiyne overlayer was proposed as a more excellent material than graphene or hexagonal boron nitride for two-dimensional confined catalysis on Pt(111) surface. Density functional theory calculations revealed the superiority of graphdiyne overlayer originates from the steric hindrance effect which increases the catalytic ability and lowers the reaction barriers. Moreover, with the big triangle holes as natural gas tunnels, graphdiyne possesses higher efficiency for the transit of gaseous reactants and products than graphene or hexagonal boron nitride. The results in this work would benefit future development of two-dimensional confined catalysis.

Graphical abstract


Graphdiyne Two-dimensional cover Confined catalysis Nanostructured catalysts Modeling and simulation 



This work was supported by the National Natural Science Foundation of China (Grant No. 11304239), the Fundamental Research Funds for the Central Universities (No. JB180513), and the 111 Project (B17035).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. An XQ, Yu JC (2011) Graphene-based photocatalytic composites. RSC Adv 1:1426CrossRefGoogle Scholar
  2. An Y-R, Fan X-L, Luo Z-F, Lau W-M (2017) Nanopolygons of monolayer MS2: best morphology and size for HER catalysis. Nano Lett 17(1):368–376CrossRefGoogle Scholar
  3. Antolini E (2012) Graphene as a new carbon support for low-temperature fuel cell catalysts. Appl Catal B 123:52CrossRefGoogle Scholar
  4. Ataca C, Ciraci S (2012) Dissociation of H2O at the vacancies of single-layer MoS2. Phys Rev B 85(19)Google Scholar
  5. Atkins P, de Paula J (2006) Physical chemistry. Oxford University Press, OxfordGoogle Scholar
  6. Baughman RH, Eckhardt H, Kertesz M (1987) Structure-property predictions for new planar forms of carbon: layered phases containing sp2 and sp atoms. J Chem Phys 87(11):6687–6699CrossRefGoogle Scholar
  7. Bleakley K, Hu P (1999) A density functional theory study of the interaction between CO and O on a Pt surface: CO/Pt(111), O/Pt(111), and CO/O/Pt(111). J Am Chem Soc 121:7644–7652CrossRefGoogle Scholar
  8. Blöchl PE (1994) Projector augmented-wave method. Phys Rev B 50:17953–17979CrossRefGoogle Scholar
  9. Deng D, Chen X, Yu L, Wu X, Liu Q, Liu Y, Yang H, Tian H, Hu Y, Du P, Si R, Wang J, Cui X, Li H, Xiao J, Xu T, Deng J, Yang F, Duchesne PN, Zhang P, Zhou J, Sun L, Li J, Pan X, Bao X (2015a) A single iron site confined in a graphene matrix for the catalytic oxidation of benzene at room temperature. Sci Adv 1(11):e1500462CrossRefGoogle Scholar
  10. Deng D, Yu L, Pan X, Wang S, Chen X, Hu P, Sun L, Bao X (2011) Size effect of graphene on electrocatalytic activation of oxygen. Chem Commun 47:10016–10018CrossRefGoogle Scholar
  11. Deng J, Li H, Xiao J, Tu Y, Deng D, Yang H, Tian H, Li J, Ren P, Bao X (2015b) Triggering the electrocatalytic hydrogen evolution activity of the inert two-dimensional MoS2 surface via single-atom metal doping. Energy Environ Sci 8(5):1594–1601CrossRefGoogle Scholar
  12. Gao D, Zhou H, Wang J, Miao S, Yang F, Wang G, Wang J, Bao X (2015) Size-dependent electrocatalytic reduction of CO2 over Pd nanoparticles. J Am Chem Soc 137(13):4288–4291CrossRefGoogle Scholar
  13. Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183–191CrossRefGoogle Scholar
  14. Grimme S (2006) Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comp Chem 27:1787–1799CrossRefGoogle Scholar
  15. Haley MM (2008) Synthesis and properties of annulenic subunits of graphyne and graphdiyne nanoarchitectures. Pure Appl Chem 80(3):519–532CrossRefGoogle Scholar
  16. Henkelman G, Uberuaga BP, Jónsson H (2000) A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J Chem Phys 113:9901–9904CrossRefGoogle Scholar
  17. Hur SH, Park JN (2013) Graphene and its application in fuel cell catalysis: a review. Asia Pac J Chem Eng 8:218–233CrossRefGoogle Scholar
  18. Jia T-T, Lu C-H, Zhang Y-F, Chen W-K (2014) A comparative study of CO catalytic oxidation on Pd-anchored graphene oxide and Pd-embedded vacancy graphene. J Nanopart Res 16:2206CrossRefGoogle Scholar
  19. Jiao Y, Du A, Hankel M, Zhu Z, Rudolph V, Smith SC (2011) Graphdiyne: a versatile nanomaterial for electronics and hydrogen purification. Chem Commun 47(43):11843–11845CrossRefGoogle Scholar
  20. Johnson CA II, Lu Y, Haley MM (2007) Synthesis of graphyne substructures via directed alkyne metathesis. Org Lett 9:3725–3728CrossRefGoogle Scholar
  21. Kattel S, Wang G (2014) Beneficial compressive strain for oxygen reduction reaction on Pt (111) surface. J Chem Phys 141:124713CrossRefGoogle Scholar
  22. Kehoe JM, Kiley JH, English JJ, Johnson CA, Petersen RC, Haley MM (2000) Carbon networks based on dehydrobenzoannulenes. 3. Synthesis of graphyne substructures. Org Lett 2:969–972CrossRefGoogle Scholar
  23. Kresse G, Furthmüller J (1996a) Efficiency of ab-initio total energy calculations for metals and semiconductors using a planewave basis set. Comput Mater Sci 6:15–50CrossRefGoogle Scholar
  24. Kresse G, Furthmüller J (1996b) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54:11169–11186CrossRefGoogle Scholar
  25. Kresse G, Hafner J (1994) Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Phys Rev B 49:14251–14269CrossRefGoogle Scholar
  26. Kresse G, Joubert D (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 59:1758–1775CrossRefGoogle Scholar
  27. Kresse GH (1993) Ab initio molecular dynamics for liquid metals. Phys Rev B 47:558–561CrossRefGoogle Scholar
  28. Lee JH, Jang WS, Han SW, Baik HK (2014) Efficient hydrogen evolution by mechanically strained MoS2 nanosheets. Langmuir 30(32):9866–9873CrossRefGoogle Scholar
  29. Li C, Yang S, Li S-S, Xia J-B, Li J (2013) Au-decorated silicene: design of a high-activity catalyst toward CO oxidation. J Phys Chem C 117(1):483–488CrossRefGoogle Scholar
  30. Li G, Li Y, Liu H, Guo Y, Lia Y, Zhua D (2010) Architecture of graphdiyne nanoscale films. Chem Commun 46:3256–3258CrossRefGoogle Scholar
  31. Li K, Li Y, Wang Y, He F, Jiao M, Tang H, Wu Z (2015) Oxygen reduction reaction on Pt(111) and Pt(100) surfaces substituted by the subsurface cu: a theoretical perspective. J Mat Chem A 3(21):11444–11452CrossRefGoogle Scholar
  32. Li R, Li H, Liu J (2016) First principles study of O2 dissociation on Pt(111) surface: stepwise mechanism. Int J Quantum Chem 116:908–914CrossRefGoogle Scholar
  33. Li Y, Xu L, Liu H, Li Y (2014) Graphdiyne and graphyne: from theoretical predictions to practical construction. Chem Soc Rev 43(8):2572–2586CrossRefGoogle Scholar
  34. Lin J, Wang A, Qiao B, Liu X, Yang X, Wang X, Liang J, Li J, Liu J, Zhang T (2013) Remarkable performance of Ir1/FeOx single-atom catalyst in water gas shift reaction. J Am Chem Soc 135:15314–15317CrossRefGoogle Scholar
  35. Lin Z-Z (2016) Graphdiyne-supported single-atom Sc and Ti catalysts for high-efficient CO oxidation. Carbon 108:343–350CrossRefGoogle Scholar
  36. Lin Z-Z, Chen X (2016) Transition-metal-decorated germanene as promising catalyst for removing CO contamination in H-2. Materials & Design 107:82–89CrossRefGoogle Scholar
  37. Ma DW, Li T, Wang Q, Yang G, He C, Ma B, Lu Z (2015) Graphyne as a promising substrate for the noble-metal single-atom catalysts. Carbon 95:756–765CrossRefGoogle Scholar
  38. Machado BF, Serp P (2012) Graphene-based materials for catalysis. Catal Sci Technol 2:54–75CrossRefGoogle Scholar
  39. Matsuoka R, Sakamoto R, Hoshiko K, Sasaki S, Masunaga H, Nagashio K, Nishihara H (2017) Crystalline graphdiyne nanosheets produced at a gas/liquid or liquid/liquid interface. J Am Chem Soc 139(8):3145–3152CrossRefGoogle Scholar
  40. Mills G, Jónsson H (1994) Quantum and thermal effects in H2 dissociative adsorption: evaluation of free energy barriers in multidimensional quantum systems. Phys Rev Lett 72:1124–1127CrossRefGoogle Scholar
  41. Mills G, Jónsson H, Schenter GK (1995) Reversible work transition state theory: application to dissociative adsorption of hydrogen. Surf Sci 324:305–337CrossRefGoogle Scholar
  42. Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 13:5188–5192CrossRefGoogle Scholar
  43. Mu R, Fu Q, Jin L, Yu L, Fang G, Tan D, Bao X (2012) Visualizing chemical reactions confined under graphene. Angew Chem Int Ed 51(20):4856–4859CrossRefGoogle Scholar
  44. Narita N, Nagai S, Suzuki S, Nakao K (2000) Electronic structure of three-dimensional graphyne. Phys Rev B 62:11146–11151CrossRefGoogle Scholar
  45. Narita N, Nagai S, Suzuki S, Nakao K (1998) Optimized geometries and electronic structures of graphyne and its family. Phys Rev B 58:11009–11014CrossRefGoogle Scholar
  46. Novoselov KS, Geim AK, Morozov SV, Jiang D, Katsnelson MI, Grigorieva IV, Dubonos SV, Firsov AA (2005a) Two dimensional gas of massless dirac fermions in graphene. Nature 438:197–200CrossRefGoogle Scholar
  47. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666–669CrossRefGoogle Scholar
  48. Novoselov KS, Jiang D, Schedin F, Booth TJ, Khotkevich V, Morozov SV, Geim AK (2005b) Two-dimensional atomic crystals. Proc Natl Acad Sci U S A 102:10451–10453CrossRefGoogle Scholar
  49. Olsen T, Thygesen KS (2013) Random phase approximation applied to solids, molecules, and graphene-metal interfaces: from van der Waals to covalent bonding. Phys Rev B 87:075111CrossRefGoogle Scholar
  50. Pan X, Bao X (2008) Reactions over catalysts confined in carbon nanotubes. Chem Commun 47(47):6271–6281CrossRefGoogle Scholar
  51. Pan Y, Wang Y, Wang L, Zhong H, Quhe R, Ni Z, Ye M, Mei W-N, Shi J, Guo W, Yang J, Lu J (2015) Graphdiyne–metal contacts and graphdiyne transistors. Nano 7(5):2116Google Scholar
  52. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868CrossRefGoogle Scholar
  53. Qi H, Yu P, Wang Y, Han G, Liu H, Yi Y, Li Y, Mao L (2015) Graphdiyne oxides as excellent substrate for electroless deposition of Pd clusters with high catalytic activity. J Am Chem Soc 137:5260–5263CrossRefGoogle Scholar
  54. Qiao B, Wang A, Yang X, Allard LF, Jiang Z, Cui Y, Liu J, Li J, Zhang T (2011) Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat Chem 3:634–641CrossRefGoogle Scholar
  55. Qu LT, Liu Y, Baek JB, Dai LM (2010) Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells. ACS Nano 4:1321CrossRefGoogle Scholar
  56. Smit B, Maesen TLM (2008) Towards a molecular understanding of shape selectivity. Nature 451(7179):671–678CrossRefGoogle Scholar
  57. Su CL, Loh KP (2013) Carbocatalysts: graphene oxide and its derivatives. Acc Chem Res 46:2275CrossRefGoogle Scholar
  58. Tahara K, Yoshimura T, Ohno M, Sonoda M, Tobe Y (2007) Syntheses and Photophysical properties of boomerang-shaped Bis(dehydrobenzo[12]annulene) and trapezoid-shaped Tris(dehydrobenzo[12]annulene). Chem Lett 36(7):838–839CrossRefGoogle Scholar
  59. Tang Y, Liu Z, Dai X, Yang Z, Chen W, Ma D, Lu Z (2014) Theoretical study on the Si-doped graphene as an efficient metal-freecatalyst for CO oxidation. Appl Surf Sci 308:402–407CrossRefGoogle Scholar
  60. Tang Y, Yang Z, Dai X (2012) A theoretical simulation on the catalytic oxidation of CO on Pt/graphene. Phys Chem Chem Phys 14:16566–16572CrossRefGoogle Scholar
  61. Wei H, Liu X, Wang A, Zhang L, Qiao B, Yang X, Huang Y, Miao S, Liu J, Zhang T (2014) FeOx-supported platinum single-atom and pseudo-single-atom catalysts for chemoselective hydrogenation of functionalized nitroarenes. Nat Commun 5:5634CrossRefGoogle Scholar
  62. Wu P, Du P, Zhang H, Cai C (2014) Graphdiyne as a metal-free catalyst for low-temperature CO oxidation. Phys Chem Chem Phys 16:5640CrossRefGoogle Scholar
  63. Yan H, Cheng H, Yi H, Yao T, Wang C, Li J, Wei S, Lu J (2015) Single-atom pd1/graphene catalyst achieved by atomic layer deposition: remarkable performance in selective hydrogenation of 1,3-butadiene. J Am Chem Soc 137:10484CrossRefGoogle Scholar
  64. Yang X-F, Wang A, Qiao B, Li J, Liu J, Zhang T (2013) Single-atom catalysts: a new frontier in heterogeneous catalysis. Accounts Chem Research 46:1740–1748CrossRefGoogle Scholar
  65. Yao Y, Fu Q, Zhang YY, Weng X, Li H, Chen M, Jin L, Dong A, Mu R, Jiang P, Liu L, Bluhm H, Liu Z, Zhang SB, Bao X (2014) Graphene cover-promoted metal-catalyzed reactions. Proc Natl Acad Sci U S A 111(48):17023–17028CrossRefGoogle Scholar
  66. Yu L, Pan X, Cao X, Hu P, Bao X (2011) Oxygen reduction reaction mechanism on nitrogen-doped graphene: a density functional theory study. J Catal 282:183–190CrossRefGoogle Scholar
  67. Yu Y, Huang S-Y, Li Y, Steinmann SN, Yang W, Cao L (2014) Layer-dependent electrocatalysis of MoS2 for hydrogen evolution. Nano Lett 14(2):553–558CrossRefGoogle Scholar
  68. Zhang H, He X, Zhao M, Zhang M, Zhao L, Feng X, Luo Y (2012) Tunable hydrogen separation in sp-sp(2) hybridized carbon membranes: a first-principles prediction. J Phys Chem C 116(31):16634–16638CrossRefGoogle Scholar
  69. Zhang Y, Weng X, Li H, Li H, Wei M, Xiao J, Liu Z, Chen M, Fu Q, Bao X (2015) Hexagonal boron nitride cover on Pt(111): a new route to tune molecule—metal interaction and metal-catalyzed reactions. Nano Lett 15:3616–3623CrossRefGoogle Scholar
  70. Zhou J, Gao X, Liu R, Xie Z, Yang J, Zhang S, Zhang G, Liu H, Li Y, Zhang J, Liu Z (2015) Synthesis of graphdiyne nanowalls using acetylenic coupling reaction. J Am Chem Soc 137(24):7596–7599CrossRefGoogle Scholar
  71. Zhou Y, Chen W, Cui P, Zeng J, Lin Z, Kaxiras E, Zhang Z (2016) Enhancing the hydrogen activation reactivity of nonprecious metal substrates via confined catalysis underneath graphene. Nano Lett 16(10):6058–6063CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Applied Physics, School of Physics and Optoelectronic EngineeringXidian UniversityXi’anChina

Personalised recommendations