Advertisement

Enhanced photocatalytic activity of ternary CuInS2 nanocrystals synthesized from the combination of a binary Cu(I)S precursor and InCl3

  • Gopinath Mondal
  • Ananyakumari Santra
  • Sumanta Jana
  • Nimai Chand Pramanik
  • Anup Mondal
  • Pulakesh Bera
Research Paper
  • 129 Downloads

Abstract

Ternary copper indium sulfide (CIS) nanocrystals (NCs) have been synthesized by mixing of binary precursor [CuI(bdpa)2][CuICl2] (1) and/or [CuI(mdpa)2][CuICl2] (2) (where, mdpa and bdpa represent methyl and benzyl ester of 3,5-dimethyl pyrazole-1-dithioic acid, respectively) with InCl3 in a low-temperature solvothermal process. The +1 oxidation state of copper and the atomic ratio Cu to S (1:2) is atomically maintained in the pyrazole-based Cu(I)–S precursor to synthesize phase pure CuInS2. Coordinating solvents like ethylene diamine (EN) and ethylene glycol (EG) have been used in the synthesis without any surfactants. No use of external surfactants in the synthesis of CIS nanoparticles reveals that precursor acts as stabilizing agent. The synthesized nanocrystals were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and energy dispersive X-ray spectroscopy (EDX) studies. The optical property of the nanocrystals shows a pronounced quantum confinement effect in the particles with band gap energy ca. 1.5 eV. The formation mechanism of ternary CIS has been proposed. The pore size distributions of the particles show the average pore diameters 13.1 nm from 1 and 5.3 nm from 2. The calculated values of the specific surface area are 8.123 and 9.577 m2/g for 1 and 2, respectively. The excellent photocatalytic degradation of rose bengal (RB) and rhodamine B (RhB) was demonstrated by the porous CIS nanocrystals.

Graphical abstract

Enhanced photocatalytic activity of ternary CuInS2 nanocrystals synthesized from the combination of a binary Cu(I)S precursor and InCl3. Gopinath Mondal, Ananyakumari Santra, Sumanta Jana, Nimai Chand Pramanik, Anup Mondal and Pulakesh Bera

Keywords

Cu(I)-precursor CuInS2 nanocrystals Solvothermal process BET isotherm Photocatalyst Nanostructured catalysts 

Notes

Acknowledgments

We are thankful to the people of CRNN, Calcutta University, for TEM analysis. Dr. S. Jana acknowledges DST for SERB project (File No. PDF/2016/000107, Sanction No. SERB/F/3407/2016-17).

Funding information

We gratefully acknowledge Council for Scientific and Industrial Research (CSIR), Government of India, for the project grant (No. 1(2858)/16/EMR-II). Panskura Banamali College acknowledges the grants received from Department of Science and Technology (SR/FST/College-295 dated 18/11/ 2015), Govt. of India, through FIST program.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11051_2018_4213_MOESM1_ESM.doc (2.3 mb)
ESM 1 (DOC 2376 kb)

References

  1. Banger KK, Jin MH-C, Harris JD, Fanwick PE, Hepp AF (2003) A new facile route for the preparation of single-source precursors for bulk, thin-film, and nanocrystallite I-III-VI semiconductors. Inorg Chem 42:7713–7715CrossRefGoogle Scholar
  2. Bera P, Seok SI (2010) Facile synthesis of nanocrystalline wurtzite Cu–In–S by amine-assisted decomposition of precursors. J Solid State Chem 183:1872–1877CrossRefGoogle Scholar
  3. Castro SL, Bailey SG, Raffaelle RP, Banger KK, Hepp AF (2003) Nanocrystalline chalcopyrite materials (CuInS2 and CuInSe2) via low-temperature pyrolysis of molecular single-source precursors. Chem Mater 15:3142–3147CrossRefGoogle Scholar
  4. Castro SL, Bailey SG, Raffaelle RP, Banger KK, Hepp AF (2004) Synthesis and characterization of colloidal CuInS2 nanoparticles from a molecular single-source precursor. J Phys Chem B 108:12429–12435CrossRefGoogle Scholar
  5. Cattarin S, Pagura C, Armelao L, Bertoncello R, Dietz N (1995) Surface characterization of CuInS2 with lamellar morphology. J Electrochem Soc 142:2818–2823CrossRefGoogle Scholar
  6. Connor ST, Hsu CM, Weil BD, Aloni S, Cui Y (2009) Phase transformation of biphasic Cu2S−CuInS2 to monophasic CuInS2 nanorods. J Am Chem Soc 131:4962–4966CrossRefGoogle Scholar
  7. Contreras MA, Egaas B, Ramanathan K, Hiltner J, Swartzlander A, Hasoon F, Noufi R (1999) Progress toward 20% efficiency in Cu(In,Ga)Se2 polycrystalline thin-film solar cells. Prog Photovolt Res Appl 7:311–316CrossRefGoogle Scholar
  8. Czekelius C, Hilgendorff M, Spanhel L, Bedja I, Lerch M, Muller G, Bloeck U, Su D, Giersig M (1999) A simple colloidal route to nanocrystalline ZnO/CuInS2 bilayers. Adv Mater 11:643–646CrossRefGoogle Scholar
  9. Du WM, Qian XF, Yin J, Gong Q (2007) Shape- and phase-controlled synthesis of monodisperse, single-crystalline ternary chalcogenide colloids through a convenient solution synthesis strategy. Chem Eur J 13:8840–8846CrossRefGoogle Scholar
  10. Gardner JS, Shurdha E, Wang CM, Lau LD, Rodriguez RG, Park JJ (2008) Rapid synthesis and size control of CuInS2 semi-conductor nanoparticles using microwave irradiation. J Nanopart Res 10:633–641CrossRefGoogle Scholar
  11. Hao Z, Cui Y, Wang G (2015) Colloidal synthesis of wurtzite CuInS2 nanocrystals and their photovoltaic application. Mater Lett 146:77–80CrossRefGoogle Scholar
  12. Klaer J, Burns J, Henninnger R, Siemer K, Klenk R, Ellmer K, Brauning D (1998) Efficient thin-film solar cells prepared by a sequential process. Semicond Sci Technol 13:1456–1458CrossRefGoogle Scholar
  13. Malik MA, Revaprasadu N, O'Brien P (2001) Air-stable single-source precursors for the synthesis of chalcogenide semiconductor nanoparticles. Chem Mater 13(3):913–920CrossRefGoogle Scholar
  14. Mondal G, Bera P, Santra A, Jana S, Mondal TN, Mondal A, Seok SI, Bera P (2014) Precursor-driven selective synthesis of hexagonal chalcocite (Cu2S) nanocrystals: structural, optical, electrical and photocatalytic properties. New J Chem 38:4774–4782CrossRefGoogle Scholar
  15. Mondal G, Santra A, Bera P, Acharjya M, Jana S, Chattopadhyay D, Mondal A, Bera P (2016) A pyrazolyl-based thiolato single-source precursor for the selective synthesis of isotropic copper-deficient copper(I) sulfide nanocrystals: synthesis, optical and photocatalytic activity. J Nanopart Res 18:311CrossRefGoogle Scholar
  16. Pan D, An L, Sun Z, Hou W, Yang Y, Yang Z, Lu Y (2008) Synthesis of Cu−In−S ternary nanocrystals with tunable structure and composition. J Am Chem Soc 130:5620–5621CrossRefGoogle Scholar
  17. Panthani MG, Akhavan V, Goodfellow B, Schmidtke JP, Dunn L, Dodabalapur A, Barbara PF, Korgel BA (2008) Synthesis of CuInS2, CuInSe2, and Cu(InxGa1-x)Se2 (CIGS) nanocrystal “inks” for printable photovoltaics. J Am Chem Soc 130:16770–16777CrossRefGoogle Scholar
  18. Persson C, Zunger A (2003) Anomalous grain boundary physics in polycrystalline CuInSe2: the existence of a hole barrier. Phys Rev Lett 91:266401CrossRefGoogle Scholar
  19. Powalla M, Voorwinden G, Hariskos D, Jackson P, Kniese R (2009) Highly efficient CIS solar cells and modules made by the co-evaporation process. Thin Solid Films 517:2111–2114CrossRefGoogle Scholar
  20. Qi Y, Liu Q, Tang K, Liang Z, Ren Z, Liu X (2009) Synthesis and characterization of nanostructured wurtzite CuInS2: a new cation disordered polymorph of CuInS2. J Phys Chem C 113:3939–3944CrossRefGoogle Scholar
  21. Sahal M, Marí B, Mollar M (2009) CuInS2 thin films obtained by spray pyrolysis for photovoltaic applications. Thin Solid Films 517:2202–2204CrossRefGoogle Scholar
  22. Schock HW, Meissner D, Vieweg & Sohn (1993) Solarzellen–Physikalische Grundlagen und Anwendungen in der Photovoltaik, Wiesbaden 44Google Scholar
  23. Song W-S, Yang H (2012) Efficient white-light-emitting diodes fabricated from highly fluorescent copper indium sulfide core/shell quantum dots. Chem Mater 24(10):1961–1967CrossRefGoogle Scholar
  24. Tang J, Hinds S, Kelly SO, Sargent EH (2008) Synthesis of colloidal CuGaSe2, CuInSe2, and Cu(InGa)Se2 nanoparticles. Chem Mater 20:6906–6910CrossRefGoogle Scholar
  25. Theresa JT, Meril M, Sudha KC, Vijayakumar KP, Abe T, Kashiwaba Y (2005) CuInS2/In2S3 thin film solar cell using spray pyrolysis technique having 9.5% efficiency. Sol Energy Mater Sol Cells 89:27–36CrossRefGoogle Scholar
  26. Uehara M, Watanabe K, Tajiri Y, Nakamura H, Maeda H (2008) Synthesis of CuInS2 fluorescent nanocrystals and enhancement of fluorescence by controlling crystal defect. J Chem Phys 129:134709CrossRefGoogle Scholar
  27. Wang G, Wei H, Shi J, Xu Y, Wu H, Luo Y, Li D, Meng Q (2017) Significantly enhanced energy conversion efficiency of CuInS2 quantum dot sensitized solar cells by controlling surface defects. Nano Energy 35:17–25CrossRefGoogle Scholar
  28. Wooten AJ, Werder DJ, Williams DJ, Casson JL, Hollingsworth JA (2009) Solution-liquid-solid growth of ternary Cu-In-Se semiconductor nanowires from multiple- and single-source precursors. J Am Chem Soc 131:16177–16188CrossRefGoogle Scholar
  29. Zhang X, Guo G, Ji C, Huang K, Zha C, Wang Y, Shen L, Gupta A, Bao N (2014) Efficient thermolysis route to monodisperse Cu2ZnSnS4 nanocrystals with controlled shape and structure. Sci Rep 4:5086CrossRefGoogle Scholar
  30. Zhong H, Zhou Y, Ye M, He Y, Ye J, He C, Yang C, Li Y (2008) Controlled synthesis and optical properties of colloidal ternary chalcogenide CuInS2 nanocrystals. Chem Mater 20:6434–6443CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Post Graduate Department of Chemistry, Panskura Banamali CollegeVidyasagar UniversityEast MedinipurIndia
  2. 2.Indian Institute of Engineering Science and Technology (IIEST)HowrahIndia
  3. 3.Department of ChemistryUniversity of CalcuttaKolkataIndia
  4. 4.Centre for Materials for Electronics Technology (C-MET)ThrissurIndia

Personalised recommendations