Photodeposition of ultrathin MoS2 nanosheets onto cubic CdS for efficient photocatalytic H2 evolution

  • Yang Peng
  • Jia Li
  • Xianhao Qian
  • Jingyi Zhang
  • Jun Lin
Research Paper


In this work, the photocatalyst composed of ultrathin MoS2 nanosheets onto the surface of cubic CdS nanoparticles with an average diameter of 7~10 nm has been successfully fabricated through a facile and mild photodeposition route. The ultrathin MoS2 nanosheets as a cocatalyst were demonstrated to greatly boost photocatalytic H2 evolution over cubic CdS upon visible light irradiation. It was clearly revealed that both the cubic CdS substrate and structure of ultrathin MoS2 nanosheets play critical roles in the observed efficient H2 evolution. The cubic CdS offers a strong adherence for ultrathin MoS2 nanosheets to form a well contact interface, across which the photogenerated charge transfer and charge separation are achieved. The ultrathin MoS2 nanosheets introduce a high density of unsaturated active S atoms for H2 evolution.


Photodeposition Photocatalytic H2 evolution Cubic CdS Ultrathin MoS2 nanosheets Unsaturated active S atoms Nanostructured catalysts 



The authors are thankful for the funding from the National Natural Science Foundation of China (Grant No. 21673287) and National Basic Research Program of China (973 Program, No. 2013CB632405).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11051_2018_4211_MOESM1_ESM.docx (1.1 mb)
ESM 1 (DOCX 1109 kb)


  1. Chhowalla M, Shin HS, Li LJ, Loh KP, Zhang H (2013) The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat Chem 5:263–275CrossRefGoogle Scholar
  2. Ekuma EC, Franklin L, Zhao GL, Wang JT, Bagayoko D (2011) Ab-initio local density approximation description of the electronic properties of zinc blende cadmium sulfide (zb-CdS). Physica B 406:1477–1480CrossRefGoogle Scholar
  3. Fu X, Zhang L, Liu L, Li H, Meng S, Ye X, Chen S (2017) In situ photodeposition of MoSx on CdS nanorods as a highly efficient cocatalyst for photocatalytic hydrogen production. J Mater Chem A 5:15287–15293CrossRefGoogle Scholar
  4. Hinnemann B, Moses PG, Bonde J, Jogensen KP, Nielsen JH, Horch S, Chorkendorff I, Norskov JK (2005) Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution. J Am Chem Soc 127:5308–5309CrossRefGoogle Scholar
  5. Iqbal S, Pan Z, Zhou K (2017) Enhanced photocatalytic hydrogen evolution from in situ formation of few-layered MoS2/CdS nanosheet-based van der Waals heterostructures. Nano 9:6638–6642Google Scholar
  6. Jaramillo TF, Jogensen KP, Bonde J, Nielsen JH, Horch S, Chorkendorff I (2007) Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science 317:100–102CrossRefGoogle Scholar
  7. Jia T, Kolpin A, Ma C, Chan RC, Kwok WM, Tsang SC (2014) A graphene dispersed CdS-MoS2 nanocrystal ensemble for cooperative photocatalytic hydrogen production from water. Chem Commun 50:1185–1188CrossRefGoogle Scholar
  8. Kato H, Asakura K, Kudo A (2003) Highly efficient water splitting into H2 and O2 over lanthanum-doped NaTaO3 photocatalysts with high crystallinity and surface nanostructure. J Am Chem Soc 125:3082–3089CrossRefGoogle Scholar
  9. Kim DJ, Yu YM, Lee JW, Choi YD (2008) Investigation of energy band gap and optical properties of cubic CdS epilayers. Appl Surf Sci 254:7522–7526CrossRefGoogle Scholar
  10. Kudo A, Miseki Y (2009) Heterogeneous photocatalyst materials for water splitting. Chem Soc Rev 38:253–278CrossRefGoogle Scholar
  11. Lewis NS, Nocera DG (2006) Powering the planet: chemical challenges in solar energy utilization. Proc Natl Acad Sci U S A 103:15729–15735CrossRefGoogle Scholar
  12. Li H, Wang Y, Chen G, Sang Y, Jiang H, He J, Li X, Liu H (2016) Few-layered MoS2 nanosheets wrapped ultrafine TiO2 nanobelts with enhanced photocatalytic property. Nano 8:6101–6109Google Scholar
  13. Li X, Tang C, Zheng Q, Shao Y, Li D (2017) Amorphous MoSx on CdS nanorods for highly efficient photocatalytic hydrogen evolution. J Solid State Chem 246:230–236CrossRefGoogle Scholar
  14. Liu Y, Yu Y, Zhang W (2013) MoS2/CdS heterojunction with high photoelectrochemical activity for H2evolution under visible light: the role of MoS2. J Phys Chem C 117:12949–12957CrossRefGoogle Scholar
  15. Merki D, Fierro S, Vrubel H, Hu X (2011) Amorphous molybdenum sulfide films as catalysts for electrochemical hydrogen production in water. Chem Sci 2:1262–1267CrossRefGoogle Scholar
  16. Min Y, He G, Xu Q, Chen Y (2014) Dual-functional MoS2 sheet-modified CdS branch-like heterostructures with photostability and photocatalytic activity. J Mater Chem A 2:2578–2584CrossRefGoogle Scholar
  17. Ning X, Meng S, Fu X, Ye X, Chen S (2016) Efficient utilization of photogenerated electrons and holes for photocatalytic selective organic synthesis in one reaction system using a narrow band gap CdS photocatalyst. Green Chem 18:3628–3639CrossRefGoogle Scholar
  18. Reddy DA, Park H, Hong S, Kumar DP, Kim TK (2017) Hydrazine-assisted formation of ultrathin MoS2 nanosheets for enhancing their co-catalytic activity in photocatalytic hydrogen evolution. J Mater Chem A 5:6981–6991CrossRefGoogle Scholar
  19. Sato S, White JM (1980) Photo-decompositionofwater over P-TiO2catalysts. Chem Phys Lett 72:83–86CrossRefGoogle Scholar
  20. Shen Q, Xue J, Mi A, Jia H, Liu X, Xu B (2013) The study on properties of CdS photocatalyst with different ratios of zinc-blende and wurtzite structure. RSC Adv 3:20930–20935CrossRefGoogle Scholar
  21. Wu K, Du Y, Tang H, Chen Z, Lian T (2015) Efficient extraction of trapped holes from colloidal CdS nanorods. J Am Chem Soc 137:10224–10230CrossRefGoogle Scholar
  22. Xiong J, Liu Y, Wang D, Liang S, Wu W, Wu L (2015) An efficient cocatalyst of defect-decorated MoS2 ultrathin nanaplates for the promotion of photocatalytic hydrogen evolution over CdS nanocrystal. J Mater Chem A 3:12631–12635CrossRefGoogle Scholar
  23. Yan Y, Xia B, Ge X, Liu Z, Wang JY, Wang X (2013) Ultrathin MoS2 nanoplates with rich active sites as highly efficient catalyst for hydrogen evolution. ACS Appl Mater Interfaces 5:12794–12798CrossRefGoogle Scholar
  24. Yang MQ, Han C, Xu YJ (2015) Insight into the effect of highly dispersion MoS2 versus layer-structured MoS2 on the photocorrosion and photoactivity of CdS in graphene-CdS-MoS2 composites. J Phys Chem C 119:27234–27246CrossRefGoogle Scholar
  25. Yang Y, Zhang Y, Fang Z, Zhang L, Zheng Z, Wang Z, Feng W, Weng S, Zhang S, Liu P (2017) Simultaneous realization of enhanced photoactivity and promoted photostability by multilayered MoS2 coating on CdS nanowire structure via compact coating methodology. ACS Appl Mater Interfaces 9:6950–6958CrossRefGoogle Scholar
  26. Yin XL, Li LL, Jiang WJ, Zhang Y, Zhang X, Wan LJ, Hu JS (2016) MoS2/CdS nanosheets-on-nanorod heterostructure for highly efficient photocatalytic H2generation under visible light irradiation. ACS Appl Mater Interfaces 8:15258–15266CrossRefGoogle Scholar
  27. Zong X, Yan H, Wu G, Ma G, Wen F, Wang L, Li C (2008) Enhancement of photocatalytic H2 evolution on CdS by loding MoS2 as cocatalyst under visible light irradiation. J Am Chem Soc 130:7176–7177CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of ChemistryRenmin University of ChinaBeijingPeople’s Republic of China

Personalised recommendations