Advertisement

Black TiO2 synthesized via magnesiothermic reduction for enhanced photocatalytic activity

  • Xiangdong Wang
  • Rong Fu
  • Qianqian Yin
  • Han Wu
  • Xiaoling Guo
  • Ruohan Xu
  • Qianyun Zhong
Research Paper
  • 333 Downloads

Abstract

Utilizing solar energy for hydrogen evolution is a great challenge for its insufficient visible-light power conversion. In this paper, we report a facile magnesiothermic reduction of commercial TiO2 nanoparticles under Ar atmosphere and at 550 °C followed by acid treatment to synthesize reduced black TiO2 powders, which possesses a unique crystalline core–amorphous shell structure composed of disordered surface and oxygen vacancies and shows significantly improved optical absorption in the visible region. The unique core–shell structure and high absorption enable the reduced black TiO2 powders to exhibit enhanced photocatalytic activity, including splitting of water in the presence of Pt as a cocatalyst and degradation of methyl blue (MB) under visible light irradiation. Photocatalytic evaluations indicate that the oxygen vacancies play key roles in the catalytic process. The maximum hydrogen production rates are 16.1 and 163 μmol h−1 g−1 under the full solar wavelength range of light and visible light, respectively. This facile and versatile method could be potentially used for large scale production of colored TiO2 with remarkable enhancement in the visible light absorption and solar-driven hydrogen production.

Keywords

Black TiO2 Magnesiothermic reduction Photocatalysis Hydrogen production Degradation of MB Nanostructured catalyst Solar energy 

Notes

Acknowledgments

The authors acknowledge proofreading and revision of this manuscript by Ms. Yuxin Li.

Funding

This study was funded by the Natural Science Foundation of Shaanxi Province (2014JM-5057) and Research Project Supported by Cooperative Innovational Center for Technical Textiles, Shaanxi Province (2015ZX─19).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y (2001) Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293:269-271Google Scholar
  2. Chen X, Liu L, Huang F (2015) Black titanium dioxide (TiO2) nanomaterials. Chem Soc Rev 44:1861–1885CrossRefGoogle Scholar
  3. Chen X, Liu L, Liu Z, Marcus MA, Wang WC, Oyler NA, Grass ME, Mao B, Glans PA, Yu PY, Guo J, Mao SS (2013) Properties of disorder-engineered black titanium dioxide nanoparticles through hydrogenation. Sci Rep 3:1510CrossRefGoogle Scholar
  4. Chen X, Liu L, Yu PY, Mao SS (2011) Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 331:746–750CrossRefGoogle Scholar
  5. Chen X, Shen S, Guo L, Mao SS (2010) Semiconductor-based photocatalytic hydrogen generation. Chem Rev 110:6503–6570CrossRefGoogle Scholar
  6. Cui H, Zhao W, Yang C, Yin H, Lin T, Shan Y, Xie Y, Gu H, Huang F (2014) Black TiO2 nanotube arrays for high-efficiency photoelectrochemical water-splitting. J Mater Chem A 2:8612–8616CrossRefGoogle Scholar
  7. Dahlman CJ, Tan Y, Marcus MA, Milliron DJ (2015) Spectroelectrochemical signatures of capacitive charging and ion insertion in doped anatase titania nanocrystals. J Am Chem Soc 137:9160–9166CrossRefGoogle Scholar
  8. Diker H, Varlikli C, Mizrak K, Dana A (2011) Characterizations and photocatalytic activity comparisons of N-doped nc-TiO2 depending on synthetic conditions and structural differences of amine sources. Energy 36:1243–1254CrossRefGoogle Scholar
  9. Farbod M, Kajbafvala M (2013) Effect of nanoparticle surface modification on the adsorptionenhanced photocatalysis of Gd/TiO2 nanocomposite. Powder Technol 239:434–440Google Scholar
  10. Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38CrossRefGoogle Scholar
  11. Jiang XD, Zhang YP, Jiang J, Rong YS, Wang YC, Wu YC, Pan CX (2012) Characterization of oxygen vacancy associates within hydrogenated TiO2: a positron annihilation study. J Phys Chem C 116:22619–22624CrossRefGoogle Scholar
  12. Khan SUM, Al-Shahry M, Ingler Jr WB (2002) Efficient photochemical water splitting by a chemically modified n-TiO2. Science 297:2243–2245CrossRefGoogle Scholar
  13. Kim C, Kim S, Lee J, Kim J, Yoon J (2015) Capacitive and oxidant generating properties of black-colored TiO2 nanotube array fabricated by electrochemical self-doping. ACS Appl Mater Interfaces 7:7486–7491CrossRefGoogle Scholar
  14. Li G, Lian Z, Li X, Xu Y, Wang W, Zhang D, Tian F, Li H (2015) Ionothermal synthesis of black Ti3+-doped single-crystal TiO2 as an active photocatalyst for pollutant degradation and H2 generation. J Mater Chem A 3:3748–3756CrossRefGoogle Scholar
  15. Lian Z, Wang W, Li G, Tian F, Schanze KS, Li H (2017) Pt-enhanced mesoporous Ti3+/TiO2 with rapid bulk to surface electron transfer for photocatalytic hydrogen evolution. ACS Appl Mater Interfaces 9:16960–16967Google Scholar
  16. Lin T, Yang C, Wang Z, Yin H, Lu X, Huang F, Lin J, Xie X, Jiang M (2014) Effective nonmetal incorporation in black titania with enhanced solar energy utilization. Energy Environ Sci 7:967–972CrossRefGoogle Scholar
  17. Liu B, Chen HM, Liu C, Andrews SC, Hahn C, Yang P (2013a) Large-scale synthesis of transition-metal-doped TiO2 nanowires with controllable overpotential. J Am Chem Soc 135:9995–9998CrossRefGoogle Scholar
  18. Liu G, Yin LC, Wang J, Niu P, Zhen C, Xie Y, Cheng HM (2012) A red anatase TiO2 photocatalyst for solar energy conversion. Energy Environ Sci 5:9603–9610CrossRefGoogle Scholar
  19. Liu L, Chen X (2014) Titanium dioxide nanomaterials: self-structural modifications. Chem Rev 114:9890–9918CrossRefGoogle Scholar
  20. Liu M, Qiu X, Miyauchi M, Hashimoto K (2013c) Energy-level matching of Fe(III) ions grafted at surface and doped in bulk for efficient visible-light photocatalysts. J Am Chem Soc 135:10064–10072CrossRefGoogle Scholar
  21. Liu N, Haublein V, Zhou X, Venkatesan U, Hartmann M, Mackovic M, Nakajima T, Spiecker E, Osvet A, Frey L, Schmuki P (2015) “Black” TiO2 nanotubes formed by high-energy proton implantation show noble-metal-co-catalyst free photocatalytic H2-evolution. Nano Lett 15:6815–6820CrossRefGoogle Scholar
  22. Liu N, Schneider C, Freitag D, Hartmann M, Venkatesan U, Muller J, Spiecker E, Schmuki P (2014) Black TiO2 nanotubes: cocatalyst-free open-circuit hydrogen generation. Nano Lett 14:3309–3313CrossRefGoogle Scholar
  23. Liu X, Gao S, Xu H, Lou Z Wang W, Huang B, Dai Y (2013b) Green synthetic approach for Ti3+ self-doped TiO2−x nanoparticles with efficient visible light photocatalytic activity. Nano 5:1870–1875Google Scholar
  24. Myung S-T, Kikuchi M, Yoon CS, Yashiro H, Kim S-J, Sun Y-K, Scrosati B (2013) Black anatase titania enabling ultra high cycling rates for rechargeable lithium batteries. Energy Environ Sci 6:2609–2614CrossRefGoogle Scholar
  25. Naldoni A, Allieta M, Santangelo S, Marelli M, Fabbri F, Cappelli S, Bianchi CL, Psaro R, Dal Santo V (2012) Effect of nature and location of defects on bandgap narrowing in black TiO2 nanoparticles. J Am Chem Soc 134:7600–7603CrossRefGoogle Scholar
  26. Nowotny J, Alim MA, Bak T, Idris MA, Ionescu M, Prince K, Sahdan MZ, Sopian K, Teridi MAM, Sigmund W (2015) Defect chemistry and defect engineering of TiO2-based semiconductors for solar energy conversion. Chem Soc Rev 44:8424–8442CrossRefGoogle Scholar
  27. Qu Y, Duan X (2013) Progress, challenge and perspective of heterogeneous photocatalysts. Chem Soc Rev 42:2568–2580CrossRefGoogle Scholar
  28. Rahman MM, Krishna KM, Soga T, Jimbo T, Umeno M (1999) Optical properties and X-ray photoelectron spectroscopic study of pure and Pb-doped TiO2 thin films. J Phys Chem Solids 60:201–210CrossRefGoogle Scholar
  29. Sinhamahapatra A, Jeon J-P, Yu J-S (2015) A new approach to prepare highly active and stable black titania for visible light-assisted hydrogen production. Energy Environ Sci 8:3539–3544CrossRefGoogle Scholar
  30. Sun Q, Hu X, Zheng S, Sun Z, Liu S, Li H (2015) Influence of calcination temperature on the structural, adsorption and photocatalytic properties of TiO2 nanoparticles supported on natural zeolite. Powder Technol 274:88–97Google Scholar
  31. Tan H, Zhao Z, Niu M, Mao C, Cao D, Cheng D, Feng P, Sun Z (2014) A facile and versatile method for preparation of colored TiO2 with enhanced solar-driven photocatalytic activity. Nano 6:10216–10223Google Scholar
  32. Teng F, Li M, Gao C, Zhang G, Zhang P, Wang Y, Chen L, Xie E (2014) Preparation of black TiO2 by hydrogen plasma assisted chemical vapor deposition and its photocatalytic activity. Appl Catal B Environ 148:339–343CrossRefGoogle Scholar
  33. Ullatti SG, Periyat P (2016) A ‘one pot’ gel combustion strategy towards Ti3+ self-doped ‘black’ anatase TiO2-x solar photocatalyst. J Mater Chem A 4:5854–5858CrossRefGoogle Scholar
  34. Wang G, Wang H, Ling Y, Tang Y, Yang X, Fitzmorris RC, Wang C, Zhang JZ, Li Y (2011) Hydrogen-treated TiO2 nanowire arrays for photoelectrochemical water splitting. Nano Lett 11:3026–3033CrossRefGoogle Scholar
  35. Wang J, Tafen DN, Lewis JP, Hong Z, Manivannan A, Zhi M, Li M, Wu N (2009) Origin of photocatalytic activity of nitrogen-doped TiO2 nanobelts. J Am Chem Soc 131:12290–12297CrossRefGoogle Scholar
  36. Wang P, Lu Y, Wang X, Yu H (2017) Co-modification of amorphous-Ti(IV) hole cocatalyst and Ni(OH)2 electron cocatalyst for enhanced photocatalytic H2-production performance of TiO2. Appl Surf Sci 391:259–266CrossRefGoogle Scholar
  37. Wang Z, Yang C, Lin T, Yin H, Chen P, Wan D, Xu F, Huang F, Lin J, Xie X, Jiang M (2013a) H-doped black titania with very high solar absorption and excellent photocatalysis enhanced by localized surface plasmon resonance. Adv Funct Mater 23:5444–5450CrossRefGoogle Scholar
  38. Wang Z, Yang C, Lin T, Yin H, Chen P, Wan D, Xu F, Huang F, Lin J, Xie X, Jiang M (2013b) Visible-light photocatalytic, solar thermal and photoelectrochemical properties of aluminium-reduced black titania. Energy Environ Sci 6:3007–3014CrossRefGoogle Scholar
  39. Xin X, Xu T, Wang L, Wang C (2016) Ti3+-self doped brookite TiO2 single-crystalline nanosheets with high solar absorption and excellent photocatalytic CO2 reduction. Sci Rep 6:23684CrossRefGoogle Scholar
  40. Yang C, Wang Z, Lin T, Yin H, Lu X, Wan D, Xu T, Zheng C, Lin J, Huang F, Xie X, Jiang M (2013) Core-shell nanostructured “black” rutile titania as excellent catalyst for hydrogen production enhanced by sulfur doping. J Am Chem Soc 135:17831–17838CrossRefGoogle Scholar
  41. Zhang C, Chen S, Mo LE, Huang Y, Tian H, Hu L, Huo Z, Dai S, Kong F, Pan X (2011) Charge recombination and band-edge shift in the dye-sensitized Mg2+-doped TiO2 solar cells. J Phys Chem C 115:16418–16424CrossRefGoogle Scholar
  42. Zhang K, Wang X, Guo X, He T, Feng Y (2014) Preparation of highly visible light active Fe–N co-doped mesoporous TiO2 photocatalyst by fast sol–gel method. J Nanopart Res 16:2246–2255CrossRefGoogle Scholar
  43. Zhao Z, Tan H, Zhao H, Lv Y, Zhou L-J, Song Y, Sun Z (2014) Reduced TiO2 rutile nanorods with well-defined facets and their visible-light photocatalytic activity. Chem Commun 50:2755–2757CrossRefGoogle Scholar
  44. Zheng Z, Huang B, Lu J, Wang Z, Qin X, Zhang X, Dai Y, Whangbo MH (2012) Hydrogenated titania: synergy of surface modification and morphology improvement for enhanced photocatalytic activity. Chem Commun 48:5733–5735CrossRefGoogle Scholar
  45. Zhou W, Li W, Wang JQ, Qu Y, Yang Y, Xie Y, Zhang K, Wang L, Fu H, Zhao D (2014) Order mesoporous black TiO2 as highly efficient hydrogen evolution photocatalyst. J Am Chem Soc 136:9280–9283CrossRefGoogle Scholar
  46. Zhu G, Lin T, Lü X, Zhao W, Yang C, Wang Z, Yin H, Liu Z, Huang F, Lin J (2013) Black brookite titania with high solar absorption and excellent photocatalytic performance. J Mater Chem A 1:9650–9653CrossRefGoogle Scholar
  47. Zhu G, Shan Y, Lin T, Zhao W, Xu J, Tian Z, Zhang H, Zheng C, Huang F (2016) Hydrogenated blue titania with high solar absorption and greatly improved photocatalysis. Nano 8:4705–4712Google Scholar
  48. Zhu Q, Peng Y, Lin L, Fan C-M, Gao G-Q, Wang R-X, Xu A-W (2014b) Stable blue TiO2-x nanoparticles for efficient visible light photocatalysts. J Mater Chem A 2:4429–4437CrossRefGoogle Scholar
  49. Zhu Y, Liu D, Meng M (2014a) H2 spillover enhanced hydrogenation capability of TiO2 used for photocatalytic splitting of water: a traditional phenomenon for new applications. Chem Commun 50:6049–6051CrossRefGoogle Scholar
  50. Zuo F, Bozhilov K, Dillon RJ, Wang L, Smith P, Zhao X, Bardeen C, Feng P (2012) Active facets on (III)-doped TiO2: an effective strategy to improve the visible-light photocatalytic activity. Angew Chem Int Ed 51:6223–6226CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Xiangdong Wang
    • 1
  • Rong Fu
    • 1
  • Qianqian Yin
    • 1
  • Han Wu
    • 1
  • Xiaoling Guo
    • 2
  • Ruohan Xu
    • 1
  • Qianyun Zhong
    • 1
  1. 1.School of ScienceXi’an Jiaotong UniversityXi’anPeople’s Republic of China
  2. 2.School of Textile and MaterialsXi‘an Polytechnic UniversityXi’anPeople’s Republic of China

Personalised recommendations