Nitrilimine cycloadditions catalyzed by iron oxide nanoparticles

  • Giorgio Molteni
  • Anna M. Ferretti
  • Sara Mondini
  • Alessandro Ponti
Research Paper


Nitrilimine cycloadditions to ethylenes, acetylenes, and activated nitriles have been exploited in the presence of catalytic amounts of oleic-acid-coated iron oxide nanoparticles (diameter = 11.9 ± 1.0 nm). The reactions were fully regioselective with monosubstituted ethylenes and ethyl cyanoformiate, while mixtures of cycloadducts were obtained in the presence of methyl propiolate. The intervention of iron oxide nanoparticles allowed carrying out the cycloadditions at milder conditions compared to the metal-free thermal processes. A labile intermediate has been proposed to explain this behavior.

Graphical abstract

Nitrilimine cycloadditions to ethylenes, acetylenes, and activated nitriles have been exploited in the presence of catalytic amounts of oleic-acid-coated iron oxide nanoparticles.


Dipolar cycloadditions Nitrilimines Catalysis Magnetic nanoparticles Nanoparticle catalysis 



The authors are grateful to F. Cargnoni (ISTM-CNR, Milan) for useful suggestions about the DFT calculations.

Author contributions

G.M. and A.P. together conceived and planned the research, discussed the results, and wrote the manuscript. G.M. carried out all the cycloadditions. A.M.F. and S.M. synthesized the nanoparticles and A.M.F. characterized them. A.P. carried out the calculations. All the authors read and approved the final manuscript.


This study was funded by Regione Lombardia (RSPPTECH Project); the Italian MIUR under grant FIRB RBAP115AYN (oxides at the nanoscale: multifunctionality and applications) and the Department of Chemistry of UNIMI under grant PSR2015-1716FDEMA_09 (cycloaddition reactions catalyzed by metal oxide nanoparticles: NANOCAT).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11051_2018_4184_MOESM1_ESM.pdf (432 kb)
ESM 1 (PDF 431 kb)


  1. Alemagna A, Del Buttero P, Licandro E et al (1981) Inter- and intra-molecular reactions of arylazomethylenetriphenylphosphoranes with unsaturated carbon-carbon bonds. Gazz Chim Ital 111:285–288Google Scholar
  2. Bégué D, GuangHua Qiao G, Wentrup C (2012) Nitrile imines: matrix isolation, IR spectra, structures, and rearrangement to carbodiimides. J Am Chem Soc 134:5339–5350CrossRefGoogle Scholar
  3. Bertini, I, Gray HB, Lippard S et al (1994) Bioinorganic chemistry, University Science Books: Mill Valley, 1994Google Scholar
  4. Broggini G, Molteni G (2000) Dipolarophilic behaviour of (arylsulfonyl)allenes towards nitrile imines. J Chem Soc Perkin Trans 1:1685–1689CrossRefGoogle Scholar
  5. Calcagnile P, Fragouli D, Bayer IS, Anyfantis GC, Martiradonna L, Cozzoli PD, Cingolani R, Athanassiou A (2012) Magnetically driven floating foams for the removal of oil contaminants from water. ACS Nano 6:5413–5419CrossRefGoogle Scholar
  6. Caramella P, Grünanger P (1984) 1,3-Dipolar Cycloaddition Chemistry,Wiley: New York, Vol. 1, Ch. 3Google Scholar
  7. Caramella P, Houk KN (1976) Geometries of nitrilium betaines. The clarification of apparently anomalous reactions of 1,3-dipoles. J Am Chem Soc 98:6397–6399CrossRefGoogle Scholar
  8. Cargnoni F, Molteni G, Cooper DL, Raimondi M, Ponti A (2006) The electronic structure of nitrilimine: absence of the carbenic form. Chem Commun:1030–1032Google Scholar
  9. Cocco MT, Maccioni A, Plumitallo A (1985) Phytotoxic activity in pyrazole derivatives II. Farmaco Sci 40:272–284Google Scholar
  10. Corsico Coda A, De Gaudenzi L, Desimoni G et al (1987) A new thermal decomposition of the isoxazole ring. Heterocycles 26:745–750CrossRefGoogle Scholar
  11. Cvetovich RJ, Pipik B, Hartner FW, Grabowski EJJ (2003) Rapid synthesis of tetrahydro-4H-pyrazolo[1,5-a]diazepine-2-carboxylate. Tetrahedron Lett 44:5867–5870CrossRefGoogle Scholar
  12. Dadiboyena S, Hamme AT II (2013) Environmentally benign Lewis acid promoted [2+3] dipolar cycloaddition reactions of nitrile imines with alkenes in water. Eur J Org Chem 2013:7567–7574CrossRefGoogle Scholar
  13. De Benassuti L, Recca T, Molteni G (2007) 15N NMR spectroscopy of partially unsaturated pyrazoles. Tetrahedron 63:3302–3305CrossRefGoogle Scholar
  14. De La Mare PBD, Swedlund BE (1973) The chemistry of the carbon-halogen bond, John Wiley & Sons: London, Part 1, Ch. 7, pp. 407–458Google Scholar
  15. Díaz-Ortiz A, de Cózar A, Prieto P, de la Hoz A, Moreno A (2006) Recyclable supported catalysts in microwave-assisted reactions: first Diels–Alder cycloaddition of a triazole ring. Tetrahedron Lett 47:8761–8764CrossRefGoogle Scholar
  16. Elguero J, Goya P, Jagerovic N et al (2002) Pyrazoles as drugs: facts and fantasies. Targets Heterocycl Syst 6:52–98Google Scholar
  17. Elwahy AHM, Shaaban MR (2017) Synthesis of heterocycles catalyzed by iron oxide nanoparticles. Heterocycles 94:595–655CrossRefGoogle Scholar
  18. Fauré JL, Réau R, Wong MW, Koch R, Wentrup C, Bertrand G (1997) Nitrilimines: evidence for the allenic structure in solution, experimental and ab initio studies of the barrier to racemization, and first diastereoselective [3 + 2]-cycloaddition. J Am Chem Soc 119:2819–2824CrossRefGoogle Scholar
  19. Ferretti AM, Ponti A, Molteni G (2015) Silver(I) oxide nanoparticles as a catalyst in the azide–alkyne cycloaddition. Tetrahedron Lett 56:5727–5730CrossRefGoogle Scholar
  20. Frisch MJ, Trucks GW, Schlegel HB et al (2009) Gaussian 09, Revision C.01, Gaussian Inc.: WallingfordGoogle Scholar
  21. Fusco R, Romani R (1946) Investigations of formazyls. I. The action of diazo compounds on chloro- and bromomalonic acids. Gazz Chim Ital 76:419–438Google Scholar
  22. Huisgen R (1963) 1,3-Dipolar cycloadditions. Past and future. Angew Chem Int Ed Engl 2:565–598CrossRefGoogle Scholar
  23. Huisgen R (1984) 1,3-Dipolar cycloaddition chemistry, Wiley: New York, Vol. 1, Ch. 1Google Scholar
  24. Huisgen R, Grashey R, Seidel M et al (1962) 1,3-Dipolar additions. II. Synthesis of 1,2,4-triazoles from nitrilimines and nitriles. Ann Chem 653:105–113CrossRefGoogle Scholar
  25. Kamal A, Swapna P (2013) An improved iron-mediated synthesis of N-2-aryl substituted 1,2,3-triazoles. RSC Adv 3:7419–7426CrossRefGoogle Scholar
  26. Kohgo Y, Ikuta K, Ohtake T, Torimoto Y, Kato J (2008) Body iron metabolism and pathophysiology of iron overload. Int J Hematol 88:7–15CrossRefGoogle Scholar
  27. Marshak S (2005) The earth: portrait of a planet. W.W. Norton & Co., New YorkGoogle Scholar
  28. Meyers AI, Sircar CJ (1970) The chemistry of the cyano group. Wiley-Interscience, London, Ch 8Google Scholar
  29. Molteni G (2007) Silver(I) salts as useful reagents in pyrazole synthesis. ARKIVOC (2):224–246Google Scholar
  30. Molteni G, Del Buttero P (2005) Nitrilimine cycloadditions to the cyano group in aqueous media. Heterocycles 65:1183–1188CrossRefGoogle Scholar
  31. Molteni G, Garanti L (2001) Behavior of hydrazonoyl chlorides towards the C=N double bond of Δ2-pyrazolines. A study on 2-(4-nitrophenyl)-2,3,3a,4,5,6-hexahydro-6-oxofuro[3,4-c]zpyrazole. Heterocycles 55:1573–1580Google Scholar
  32. Molteni G, Orlandi M, Broggini G (2000) Nitrilimine cycloadditions in aqueous media. J Chem Soc Perkin Trans 1:3742–3745CrossRefGoogle Scholar
  33. Molteni G, Ponti A, Orlandi M (2002) Uncommon aqueous media for nitrilimine cycloadditions. I. Synthetic and mechanistic aspects in the formation of 1-aryl-5-substituted-4,5-dihydropyrazoles. New J Chem 26:1340–1345CrossRefGoogle Scholar
  34. Molteni G, Bianchi CL, Marinoni G, Santo N, Ponti A (2006) Core-shell Cu@Cu-oxide nanoparticles as catalyst in the click azide-alkyne cycloaddition. New J Chem 30:1137–1139CrossRefGoogle Scholar
  35. Mondini S, Ferretti AM, Puglisi A et al (2012) Pebbles and Pebblejuggler: software for accurate, unbiased, and fast measurement and analysis of nanoparticle morphology from transmission electron microscopy (TEM) micrographs. Nanoscale 4:5356–5372 Pebbles is freely available from the authors, CrossRefGoogle Scholar
  36. Movassagh B, Talebsereshki F (2013) Efficient one-pot synthesis of β-acetamido carbonyl compounds using Fe3O4 nanoparticles. Helv Chim Acta 96:1943–1947CrossRefGoogle Scholar
  37. Movassagh B, Yousefi A (2015) Magnetic iron oxide nanoparticles as an efficient and recyclable catalyst for the solvent-free synthesis of sulfides, vinyl sulfides, thiol esters, and thia-Michael adducts. Monatsh Chem 146:135–142CrossRefGoogle Scholar
  38. Padwa A (1992) Comprehensive organic synthesis. Pergamon Press, New York, 1992, Vol. 4, Ch. 4–9, p 1069Google Scholar
  39. Padwa A (2002) Synthetic applications of 1,3- dipolar cycloaddition chemistry toward heterocycles and natural products. Wiley, New YorkCrossRefGoogle Scholar
  40. Park J, An K, Hwang Y, Park JG, Noh HJ, Kim JY, Park JH, Hwang NM, Hyeon T (2004) Ultra-large-scale syntheses of monodisperse nanocrystals. Nat Mater 3:891–895CrossRefGoogle Scholar
  41. Penning TD, Talley JJ, Bertenshaw SR, Carter JS, Collins PW, Docter S, Graneto MJ, Lee LF, Malecha JW, Miyashiro JM, Rogers RS, Rogier DJ, Yu SS, Anderson GD, Burton EG, Cogburn JN, Gregory SA, Koboldt CM, Perkins WE, Seibert K, Veenhuizen AW, Zhang YY, Isakson PC (1997) Synthesis and biological evaluation of the 1,5-diarylpyrazole class of cyclooxygenase-2 inhibitors: identification of 4-[5-(4-methylphenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzene sul fonamide (SC-58635, Celecoxib). J Med Chem 40:1347–1365CrossRefGoogle Scholar
  42. Ponti A, Molteni G (2001) DFT-based quantitative prediction of regioselectivity: cycloaddition of nitrilimines to methyl propiolate. J Org Chem 66:5252–5255CrossRefGoogle Scholar
  43. Qu J, Cao CY, Dou ZF et al (2012) You have full text access to this content) Synthesis of cyclic carbonates: catalysis by an iron-based composite and the role of hydrogen bonding at the solid/liquid interface. ChemSusChem 5:652–655CrossRefGoogle Scholar
  44. Reddy PM, Kumar KA, Raju KM et al (2000) Synthesis and characterization of iron (II, III) complexes of 3-hydroxy-benzaldehyde isonicotinic acid hydrazone. Indian J Chem 39A:1182–1186Google Scholar
  45. Reddy LH, Arias JL, Nicolas J, Couvreur P (2012) Magnetic nanoparticles: design and characterization, toxicity and biocompatibility, pharmaceutical and biomedical applications. Chem Rev 112:5818–5878CrossRefGoogle Scholar
  46. Shimizu T, Hayashi Y, Nishio T (1984) The reaction of N-aryl-C-ethoxycarbonylnitrilimine with olefins. Bull Chem Soc Jpn 57:787–790CrossRefGoogle Scholar
  47. Sircard G, Baceiredo A, Bertrand G (1988) Synthesis and reactivity of a stable nitrile imine. J Am Chem Soc 110:2663–2664CrossRefGoogle Scholar
  48. Su X, Aprahamian I (2014) Hydrazone-based switches, metallo-assemblies and sensors. Chem Soc Rev 43:1963–1981CrossRefGoogle Scholar
  49. Swart M (2008) Accurate spin-state energies for iron complexes. J Chem Theory Comput 4:2057–2066CrossRefGoogle Scholar
  50. Wade PA (1992) Comprehensive organic synthesis. Pergamon Press, New York, Vol. 4, Ch. 4–10, p 1111Google Scholar
  51. Zeng T, Chen WW, Cirtiu CM, Moores A, Song G, Li CJ (2010) Fe3O4 nanoparticles: a robust and magnetically recoverable catalyst for three-component coupling of aldehyde, alkyne and amine. Green Chem 12:570–573CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Giorgio Molteni
    • 1
  • Anna M. Ferretti
    • 2
  • Sara Mondini
    • 2
  • Alessandro Ponti
    • 2
  1. 1.Dipartimento di ChimicaUniversità degli Studi di MilanoMilanItaly
  2. 2.Laboratorio di Nanotecnologie, Istituto di Scienze e Tecnologie MolecolariConsiglio Nazionale delle RicercheMilanItaly

Personalised recommendations