Advertisement

The effect of Au nanoparticles on the strain-dependent electrical properties of CVD graphene

  • Jing Bai
  • Haiyan Nan
  • Han Qi
  • Dan Bing
  • Ruxia Du
Research Paper
  • 118 Downloads

Abstract

We conducted an experimental study of the effect of Au nanoparticles (NPs) on the strain-dependent electrical properties in chemical vapor deposition grown graphene. We used 5-nm thick Au NPs as an effective cover (and doping) layer for graphene, and found that Au NPs decrease electrical resistance by two orders of magnitude. In addition, the Au NPs suppress the effect of strain on resistance because the intrinsic topological cracks and grain boundaries in graphene are filled with Au nanoparticles. This method has a big potential to advance industrial production of large-area, high-quality electronic devices and graphene-based transparent electrodes.

Keywords

Graphene Strain Resistance Au nanoparticles Nanocomposites 

Notes

Compliance with ethical standards

Funding

This work is funded by Science Foundation of Nanjing Tech University Pujiang Institute (njpj2015-1-02), National Natural Science Foundation of China (Grant No. 11704159), Natural Science Foundation of Jiangsu Province (Grant No. BK20160831), and Natural Science Fund for Colleges and Universities in Jiangsu Province (16KJB430019).

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11051_2018_4178_MOESM1_ESM.png (504 kb)
ESM 1 (PNG 503 kb)
11051_2018_4178_MOESM2_ESM.png (8 kb)
ESM 2 (PNG 8 kb)

References

  1. Bae S, Kim H, Lee Y, Xu X, Park JS, Zheng Y, Balakrishnan J, Lei T, Kim HR, Song Y, Kim YJ, Kim KS, Ozyilmaz B, Ahn JH, Hong BH, Lijima S (2010) Nat Nanotechnol 5:574CrossRefGoogle Scholar
  2. Bae SH, Lee Y, Sharma BK, Lee HJ, Kim JH, Ahn JH (2013) Carbon 51Google Scholar
  3. Bostwick A, Speck F, Seyller T, Horn K, Polini M, Asgari R, MacDonald AH, Rotenberg E (2010) Observation of plasmarons in quasi-freestanding doped graphene. Science 328:999–1002CrossRefGoogle Scholar
  4. Das A, Pisana S, Chakraborty B, Piscanec S, Saha SK, Waghmare UV, Novoselov KS, Krishnamurthy HR, Geim AK, Ferrari AC, Sood AK (2008) Nat Nanotechnol 3:210CrossRefGoogle Scholar
  5. Ferrari AC, Meyer JC, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov KS, Roth S, Geim AK (2006) Raman spectrum of graphene and graphene layers. Phys Rev Lett 97:187401CrossRefGoogle Scholar
  6. Fu XW, Liao ZM, Zhou JX, Zhou YB, Wu HC, Zhang R, Jing G, Xu J, Wu X, Guo W, Yu D (2011) Strain dependent resistance in chemical vapor deposition grown graphene. Appl Phys Lett 99:213107CrossRefGoogle Scholar
  7. Guinea F, Katsnelson MI, Geim AK (2010) Energy gaps and a zero-field quantum Hall effect in graphene by strain engineering. Nat Phys 6:30–33CrossRefGoogle Scholar
  8. Ho PH, Liou YT, Chuang CH, Lin SW, Tseng CY, Wang DY, Chen CC, Hung WY, Wen CY, Chen CW (2015) Adv Mater 27:1724CrossRefGoogle Scholar
  9. Kim KS, Zhao Y, Jang H, Lee SY, Kim JM, Kim KS, Ahn JH, Kim P, Choi JY, Hong BH (2009) Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457:706–710CrossRefGoogle Scholar
  10. Lee YH, Kim YJ (2012) Electrical and lattice vibrational behaviors of graphene devices on flexible substrate under small mechanical strain. Appl Phys Lett 101:083102CrossRefGoogle Scholar
  11. Lee C, Wei X, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321:385–388CrossRefGoogle Scholar
  12. Li X, Zhu Y, Cai W, Borysiak M, Han B, Chen D, Piner RD, Colombo L, Ruoff RS (2009) Transfer of large-area graphene films for high-performance transparent conductive electrodes. Nano Lett 9:4359–4363CrossRefGoogle Scholar
  13. Liu L, Zhou H, Cheng R, Yu WJ, Liu Y, Chen Y, Shaw J, Zhong X, Huang Y, Duan X (2012) High-yield chemical vapor deposition growth of high-quality large-area AB-stacked bilayer graphene. ACS Nano 6:8241–8249CrossRefGoogle Scholar
  14. Mohiuddin TM, Lombardo A, Nair RR, Bonetti A, Savini G, Jalil R, Bonini N, Basko DM, Galiotis C, Marzari N, Novoselov KS, Geim AK, Ferrari AC (2009) Uniaxial strain in graphene by Raman spectroscopy:Gpeak splitting, Grüneisen parameters, and sample orientation. Phys Rev B 79:205433CrossRefGoogle Scholar
  15. Nair RR, Blake P, Grigorenko AN, Novoselov KS, Booth TJ, Stauber T, Peres NM, Geim AK (2008) Fine structure constant defines visual transparency of graphene. Science 320:1308CrossRefGoogle Scholar
  16. Ni ZH, Yu T, Lu YH, Wang YY, Feng YP, Shen ZX (2008) Uniaxial strain on graphene: Raman spectroscopy study and band-gap opening. ACS Nano 2(11):2301–2305CrossRefGoogle Scholar
  17. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666–669CrossRefGoogle Scholar
  18. Novoselov KS, Jiang Z, Zhang Y, Morozov SV, Stormer HL, Zeitler U, Maan JC, Boebinger GS, Kim P, Geim AK (2007) Room-temperature quantum Hall effect in graphene. Science 315:1379CrossRefGoogle Scholar
  19. Salihoglu O, Balci S, Kocabas C (2012) Plasmon-polaritons on graphene-metal surface and their use in biosensors. Appl Phys Lett 100:213110CrossRefGoogle Scholar
  20. Schedin F, Geim AK, Morozov SV, Hill EW, Blake P, Katsnelson MI, Novoselov KS (2007) Detection of individual gas molecules adsorbed on graphene. Nat Mater 6:652–655CrossRefGoogle Scholar
  21. Teague ML, Lai AP, Velasco J, Hughes CR, Beyer AD, Bockrath MW, Lau CN, Yeh NC (2009) Evidence for strain-induced local conductance modulations in single-layer graphene on SiO2. Nano Lett 9:2542–2546CrossRefGoogle Scholar
  22. Wang YY, Gao RX, Ni ZH, He H, Guo SP, Yang HP, Cong CX, Yu T (2012) Nanotechnology 23:495713CrossRefGoogle Scholar
  23. Yu T, Ni Z, Du C, You Y, Wang Y, Shen Z (2008) Raman mapping investigation of graphene on transparent flexible substrate: the strain effect. J Phys Chem C 112:12602–12605CrossRefGoogle Scholar
  24. Zhao J, He C, Yang R, Shi Z, Cheng M, Yang W, Xie G, Wang D, Shi D, Zhang G (2012) Ultra-sensitive strain sensors based on piezoresistive nanographene films. Appl Phys Lett 101:063112CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Jing Bai
    • 1
  • Haiyan Nan
    • 2
    • 3
  • Han Qi
    • 4
  • Dan Bing
    • 1
  • Ruxia Du
    • 1
  1. 1.Department of Basic TeachingNanjing Tech University Pujiang InstituteNanjingChina
  2. 2.Engineering Research Center of IoT Technology Applications (Ministry of Education), Department of Electronic EngineeringJiangnan UniversityWuxiChina
  3. 3.Department of PhysicsSoutheast UniversityNanjingChina
  4. 4.Jiangsu Key Laboratory for Design and Fabrication of Micro-Nano Biomedical Instruments, School of Mechanical EngineeringNanjingChina

Personalised recommendations