Thermal and magnetic behavior of BiFeO3 nanoparticles prepared by glycine-nitrate combustion

Abstract

The temperature behavior of bismuth orthoferrite nanoparticles obtained by the glycine-nitrate combustion method was studied by high-temperature X-ray diffractometry and complex thermal analysis. The region of stability of the material in a single-phase state was found. It was shown that the nanocrystalline BiFeO3 did not undergo decay in the temperature interval 550–780 °С. In this temperature interval, we have obtained the nanocrystalline material with average crystallite sizes 40–90 nm and average particle sizes 100–150 nm the sizes of which depend on temperature. The features of formation of BiFeO3 and the process of their sintering were studied. Results show that the crystallite growth slowed down after the amorphous phase disappeared. The sintering of nanopowder became more intense in the temperature interval 600–700 °С, but no noticeable increase in the crystallite sizes occurred. The magnetic behavior of obtained material was also discussed. It was found to be consistent with the concept of violation of the cycloidal magnetic order in bismuth orthoferrite.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Akbashev AR, Kaul AR (2011) Structural and chemical aspects of the design of multiferroic materials. Russ Chem Rev 80(12):1159–1179. https://doi.org/10.1070/RC2011v080n12ABEH004239

    Article  Google Scholar 

  2. Arnold DC, Knight KS, Morrison FD, Lightfoot P (2009) Ferroelectric-paraelectric transition in BiFeO3: crystal structure of the orthorhombic phase. Phys Rev Lett 102(2):027602–027612. https://doi.org/10.1103/PhysRevLett.102.027602

    Article  Google Scholar 

  3. Arnold DC, Knight KS, Catalan G, Redfern SAT, Scott JF, Lightfoot P, Morrison FD (2010) The 2β-to-γ transition in BiFeO3: a powder neutron diffraction study. Adv Funct Mater 20(13):2116–2123. https://doi.org/10.1002/adfm.201000118

    Article  Google Scholar 

  4. Aruna ST, Mukasyan AS (2008) Combustion synthesis and nanomaterials. Curr Opin Solid State Mater Sci 12(3-4):44–50. https://doi.org/10.1016/j.cossms.2008.12.002

    Article  Google Scholar 

  5. Bajpai OP, Kamdi JB, Selvakumar M, Ram S, Khastgir D, Chattopadhyay S (2014) Effect of surface modification of BiFeO3 on the dielectric, ferroelectric, magneto-dielectric properties of polyvinylacetate/BiFeO3 nanocomposites. Express Polym Lett 8(9):669–681. https://doi.org/10.3144/expresspolymlett.2014.70

    Article  Google Scholar 

  6. Carvalho TT, Tavares PB (2008) Synthesis and thermodynamic stability of multiferroic BiFeO3. Mater Lett 62(24):3984–3986. https://doi.org/10.1016/j.matlet.2008.05.051

    Article  Google Scholar 

  7. Catalan G, Scott JF (2009) Physics and applications of bismuth ferrite. Adv Mater 21(24):2463–2485. https://doi.org/10.1002/adma.200802849

    Article  Google Scholar 

  8. Cheng GF, Ruan YJ, Liu W, Wu XS (2015) Effect of temperature variation on the phase transformation in the reaction sintering of BiFeO3 ceramics. Mater Lett 143:330–332. https://doi.org/10.1016/j.matlet.2014.12.121

    Article  Google Scholar 

  9. Egorysheva AV, Kuvshinova TB, Volodin VD, Ellert OG, Efimov NN, Skorikov VM, Baranchikov AE, Novotortsev VM (2013) Synthesis of high-purity nanocrystalline BiFeO3. Inorgan Mater 49(3):310–314. https://doi.org/10.1134/S0020168513030035

    Article  Google Scholar 

  10. Ganesh RS, Sharma SK, Sankar S, Divyapriya B, Durgadevi E, Raji P, Ponnusamy S, Muthamizhchelvan C, Hayakawa Y, Kim DY (2017) Microstructure, structural, optical and piezoelectric properties of BiFeO3 nanopowder synthesized from sol-gel. Curr Appl Phys 17(3):409–416. https://doi.org/10.1016/j.cap.2016.12.008

    Article  Google Scholar 

  11. Goliс DL, Radojkoviс A, Cirkovi J, Dapcevi A, Pajic D, Tasic N, Savic SM, Pocuca-Nesi M, Markovic S, Brankovic G, Stanojevic ZM, Brankovic Z (2016) Structural, ferroelectric and magnetic properties of BiFeO3 synthesized by sonochemically assisted hydrothermal and hydro-evaporation chemical methods. J Eur Ceram Soc 36:1623–1631

    Article  Google Scholar 

  12. Jiagang W, Fan Z, Xiao D, Zhu J, Wang J (2016) Multiferroic bismuth ferrite-based materials for multifunctional applications: ceramic bulks, thin films and nanostructures. Prog Mater Sci 84:335–402

    Article  Google Scholar 

  13. Kadomtseva AM, Popov Yu F, Pyatakov AP, Vorob’ev GP, Zvezdin АК, Viehland D (2006) Phase transitions in multiferroic BiFeO3 crystals, thin-layers, and ceramics: enduring potential for a single phase, room-temperature magnetoelectric ‘holy grail’. Phase Transit 79(12):1019–1042. https://doi.org/10.1080/01411590601067235

    Article  Google Scholar 

  14. Koizumi H, Nirizaki N, Ikeda T (1964) An x-ray study on Bi2O3-Fe2O3 system. Jpn Appl Phys 3:495–496

    Article  Google Scholar 

  15. Koferstein R (2014) Synthesis, phase evolution and properties of phase-pure nanocrystalline BiFeO3 prepared by a starch-based combustion method. J Alloy Compd 590:324–330. https://doi.org/10.1016/j.jallcom.2013.12.120

    Article  Google Scholar 

  16. Liu Z, Liang S, Li S, Zhu Y, Zhu X (2015) Synthesis, microstructural characterization, and dielectric properties of BiFeO3 microcrystals derived from molten salt method. Ceram Int 41:S19–S25. https://doi.org/10.1016/j.ceramint.2015.03.244

    Article  Google Scholar 

  17. Lomanova NA, Gusarov VV (2013) Influence of synthesis temperature on BiFeO3 nanoparticles formation. Nanosyst: Phys Chem Math 4:696–705

    Google Scholar 

  18. Lomanova NA, Tomkovich MV, Sokolov VV, Gusarov VV (2016) Special features of formation of nanocrystalline BiFeO3 via the glycine-nitrate combustion method. Russ J Gen Chem 86(10):2256–2262. https://doi.org/10.1134/S1070363216100030

    Article  Google Scholar 

  19. Maitre A, Francois M, Gachon JC (2004) Experimental study of the Bi2O3–Fe2O3 pseudo-binary system. J Phase Equilib Diffus 25(1):59–67

    Article  Google Scholar 

  20. Mikhailov AV, Gribchenkova NA, Kolosov EN, Kaul’ AR, Alikhanyan AS (2011) Mass spectrometric investigation of vaporization in the Bi2O3-Fe2O3 system. Russ J Phys Chem A 85(1):26–30. https://doi.org/10.1134/S0036024411010183

    Article  Google Scholar 

  21. Morozov MI, Lomanova NA, Gusarov VV (2003) Specific features of BiFeO3 formation in a mixture of bismuth(III) and iron(III) oxides. Russ J Gen Chem 73:1772–1776

    Google Scholar 

  22. Ortiz-Quinonez JL, Diaz D, Zumeta-Dube I, Arriola-Santamaria H, Betancourt I, Santiago-Jacinto P, Nava-Etzana N (2013) Easy synthesis of high-purity BiFeO3 nanoparticles: new insights derived from the structural, optical, and magnetic characterization. Inorg Chem 52:10306–10317

    Article  Google Scholar 

  23. Ostroushko AA, Russkikh OV (2017) Oxide material synthesis by combustion of organic-inorganic compositions. Nanosyst: Phys Chem Math 8(4):476–502

    Google Scholar 

  24. Oyarzun S, Tamion A, Tournus F, Dupuis V, Hillenkamp M (2015) Size effects in the magnetic anisotropy of embedded cobalt nanoparticles: from shape to surface. Sci Rep 5:14749–14745

    Article  Google Scholar 

  25. Palai R, Katiyar RS, Schmid H, Tissot P, Clark SJ, Robertson J, Redfern SAT, Scott JF (2008) The beta phase of multiferroic bismuth ferrite and its beta-gamma metal-insulator transition. Phys Rev B 77(1):014110. https://doi.org/10.1103/PhysRevB.77.014110

    Article  Google Scholar 

  26. Park T-J, Papaefthymiou GC, Viescas AJ, Moodenbaugh AR, Wong SS (2007) Size-dependent magnetic properties of single-crystalline multiferroic BiFeO3 nanoparticles. Nano Lett 7(3):766–772. https://doi.org/10.1021/nl063039w

    Article  Google Scholar 

  27. Perejon A, Sanchez-Jimenez PE, Criado JM, Perez-Maqueda LA (2014) Thermal stability of multiferroic BiFeO3: kinetic nature of the β−γ transition and peritectic decomposition. J Phys Chem C 118(45):26387–26395. https://doi.org/10.1021/jp507831j

    Article  Google Scholar 

  28. Popov YF, Zvezdin AK, Vorob’ev GP, Kadomtseva AM, Murashev VA, Rakov DN (1993) Linear magnetoelectric effect and phase transitions in bismuth ferrite BiFeO3. JETP Lett 57:69–73

    Google Scholar 

  29. Popkov VI, Almjasheva OV (2014) Yttrium orthoferrite YFeO3 nanopowders formation under glycine-nitrate combustion conditions. Russ J Appl Chem 87(2):167–171. https://doi.org/10.1134/S1070427214020074

    Article  Google Scholar 

  30. Priyadharsini P, Pradeep A, Murugesan C, Md Gazzali PM, Chandrasekaran G (2014) Phase evolution in BiFeO3 nanoparticles prepared by glycine-assisted combustion method. Combust Sci Technol 186(3):297–312. https://doi.org/10.1080/00102202.2013.859682

    Article  Google Scholar 

  31. Rojac T, Bencan A, Malic B, Tutuncu G, Jones JL, Daniels JE, Damjanovic D (2014) BiFeO3 сeramics: processing, electrical, and electromechanical properties. J Am Ceram Soc 97(7):1993–2011. https://doi.org/10.1111/jace.12982

    Article  Google Scholar 

  32. Schmid H (1994) Multi-ferroic magnetoelectrics. Ferroelectrics 162:19–25

    Google Scholar 

  33. Ruette B, Zvyagin S, Pyatakov AP, Bush A, Li JF, Belotelov VI, Zvezdin AK, Viehland D (2004) Magnetic-field-induced phase transition in BiFeO3 observed by high-field electron spin resonance: cycloidal to homogeneous spin order. Phys Rev B 69:064114–064117

    Article  Google Scholar 

  34. Selbach SM, Tybell T, Einarsrud M-A, Grande T (2008) The ferroic phase transitions of BiFeO3. Adv Mater 20(19):3692–3696. https://doi.org/10.1002/adma.200800218

    Article  Google Scholar 

  35. Silva J, Reayes A, Esparza H, Camacho H, Fuentes L (2011) BiFeO3: a review on synthesis, doping and crystal structure. Integr Ferroelectr 126:47–59

    Article  Google Scholar 

  36. Scott JF (2007) Data storage: Multiferroic memories. Nat Mater 6(4):256–257. https://doi.org/10.1038/nmat1868

    Article  Google Scholar 

  37. Sosnowska I, Peterlin-Neumaier T, Steichele EJ (1982) Spiral magnetic ordering in bismuth ferrite. Phys C Solid State Phys 15:4835–4846

    Article  Google Scholar 

  38. Speranskaya EI, Skorikov VM, Rode EY, Terekhova VA (1965) The phase diagram of the system bismuth oxide – ferric oxide. Bull Acad Sci U.S.S.R 5(87):3–4

    Google Scholar 

  39. Suzuki K, Tokudome YK, Tsuda H, Takahashi M (2016) Morphology control of BiFeO3 aggregates via hydrothermal synthesis. J Appl Crystallogr 49(1):168–174. https://doi.org/10.1107/S1600576715023845

    Article  Google Scholar 

  40. Thrall M, Freer R, Martin C, Azough F, Patterson B, Cernik RJ (2008) An in situ study of the formation of multiferroic bismuth ferrite using high resolution synchrotron X-ray powder diffraction. J Eur Ceram Soc 28(13):2567–2572. https://doi.org/10.1016/j.jeurceramsoc.2008.03.029

    Article  Google Scholar 

  41. Tokunaga M, Azuma M, Shimakawa Y (2010) High-field study of strong magnetoelectric coupling in single-domain crystals of BiFeO3. J Phys Soc Jpn 79:064713–064715

    Article  Google Scholar 

  42. Tugova E, Yastrebov S, Karpov O, Smith R (2017) NdFeO3 nanocrystals under glycine nitrate combustion formation. J Cryst Grow 467:88–92. https://doi.org/10.1016/j.jcrysgro.2017.03.022

    Article  Google Scholar 

  43. Valant M, Axelsson A-K, Alford N (2007) Peculiarities of a solid-state synthesis of multiferroic polycrystalline BiFeO3. Chem Mater 19(22):5431–5436. https://doi.org/10.1021/cm071730+

    Article  Google Scholar 

  44. Vijayasundaram SV, Suresh G, Kanagadurai R (2016) Chemically synthesized phase-pure BiFeO3 nanoparticles: influence of agents on the purity. Nano-Struct and Nano-Obj 8:1–6

    Article  Google Scholar 

  45. Wang J, Neaton JB, Zheng H, Nagarajan V, Ogale SB, Liu B, Viehland D, Vaithyanathan V, Schlom DG, Waghmare UV, Spaldin NA, Rabe KM, Wuttig M, Ramesh R (2003) Epitaxial BiFeO3 multiferroic thin film heterostructure. Science 299(5613):1719–1722. https://doi.org/10.1126/science.1080615

    Article  Google Scholar 

  46. Wu L, Yu JC, Zhang L (2004) Selective self-propagating combustion synthesis of hexagonal and orthorhombic nanocrystalline yttrium iron oxide. J Solid State Chem 177(10):3666–3674. https://doi.org/10.1016/j.jssc.2004.06.020

    Article  Google Scholar 

  47. Wu J, Fan Z, Xiao D, Zhu J, Wang J (2016) Multiferroic bismuth ferrite-based materials for multifunctional applications: ceramic bulks, thin films and nanostructures. Prog Mater Sci 84:335–402. https://doi.org/10.1016/j.pmatsci.2016.09.001

  48. Yaako MK, Tai MFM, Deni MSM, Chandra A, Lu L, Yahya MZA (2013) First principle study on structural, elastic and electronic properties of cubic BiFeO3. Ceram Int 39:283–286

    Article  Google Scholar 

  49. Zhang W, Zhou Z, Zhong Y, Zhang T, Huang Y (2015) The effect of surface and interface on Neel transition temperature of low-dimensional antiferromagnetic materials. AIP Adv 5:117228

    Article  Google Scholar 

Download references

Funding

This work was financially supported by the Russian Science Foundation (No. 16-13-10252).

Author information

Affiliations

Authors

Corresponding author

Correspondence to N. A. Lomanova.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lomanova, N.A., Tomkovich, M.V., Sokolov, V.V. et al. Thermal and magnetic behavior of BiFeO3 nanoparticles prepared by glycine-nitrate combustion. J Nanopart Res 20, 17 (2018). https://doi.org/10.1007/s11051-018-4125-6

Download citation

Keywords

  • Bismuth orthoferrite
  • Nanoparticles
  • Nanocrystals
  • Thermal properties
  • Magnetic properties
  • Glycine-nitrate combustion