Advertisement

Electrospinning preparation of one-dimensional Ce3+-doped Li4Ti5O12 sub-microbelts for high-performance lithium-ion batteries

  • Xueyang Ji
  • Dong Li
  • Qifang LuEmail author
  • Enyan Guo
  • Linbing Yao
Research Paper

Abstract

One-dimensional Ce3+-doped Li4Ti5O12 (Li4Ti5−x Ce x O12, x = 0, 0.01, 0.02, and 0.05) sub-microbelts with the width of approximately 500 nm and thickness of about 200 nm have been synthesized via the facile electrospinning method. The structure and morphology of the as-prepared samples are characterized by XRD, TEM, SEM, BET, HRTEM, XPS, and AFM. Importantly, one-dimensional Li4Ti5O12 sub-microbelts can be well preserved with the introduction of Ce3+ ions, while CeO2 impurity is obtained when x is greater than or equal to 0.02. The comparative experiments prove that Ce3+-doped Li4Ti5O12 electrodes exhibit the brilliant electrochemical performance than undoped counterpart. Particularly, the reversible capacity of Li4Ti4.98Ce0.02O12 electrode reaches up to 139.9 mAh g−1 and still maintains at 132.6 mAh g−1 even after 100 cycles under the current rate of 4 C. The superior lithium storage properties of Li4Ti4.98Ce0.02O12 electrode could be attributed to their intrinsic structure advantage as well as enhanced overall conductivity.

Graphical abstract

Keywords

Li4Ti5O12 Electrospinning Ce3+-doped Sub-microbelts Lithium-ion batteries Energy storage 

Notes

Acknowledgments

This work was supported by Shandong Provincial Natural Science Foundation (Grant No. ZR2016BM22, ZR2016EMB23) and Science and Technology Development Plan Project of Shandong Province (2014GGX102039).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11051_2017_4085_MOESM1_ESM.doc (1.9 mb)
ESM 1 (DOC 1958 kb)

References

  1. Balke N, Jesse S, Morozovska AN, Eliseev E, Chung DW, Kim Y, Adamczyk L, Garcia RE, Dudney N, Kalinin SV (2010) Nanoscale mapping of ion diffusion in a lithium-ion battery cathode. Nature Nanotechnol 5(10):749–754.  https://doi.org/10.1038/nnano.2010.174 CrossRefGoogle Scholar
  2. Cai YJ, Huang YD, Wei J, Wang XC, Guo Y, Jia DZ, Sun ZP, Pang WK, Guo ZP (2016a) Super high-rate, long cycle life of europium modified carbon coated hierarchical mesoporous lithium titanate anode materials for lithium ion batteries. J Mater Chem A 4(25):9949–9957.  https://doi.org/10.1039/C6TA03162E CrossRefGoogle Scholar
  3. Cai YJ, Huang YD, Jia W, Zhang Y, Wang XC, Guo Y, Jia DZ, Pang WK, Guo ZP, Wang LS (2016b) Two-dimension dysprosium-modified bamboo-slip like lithium titanate with high-rate capability, long cycle life for lithium-ion batteries. J Mater Chem A 4(45):17782–17790.  https://doi.org/10.1039/C6TA06956H CrossRefGoogle Scholar
  4. Chou SL, Wang JZ, Liu HK, Dou SX (2011) Rapid synthesis of Li4Ti5O12 microspheres as anode materials and its binder effect for lithium-ion battery. J Phys Chem C 115(32):16220–16227.  https://doi.org/10.1021/jp2039256 CrossRefGoogle Scholar
  5. Ding KQ, Zhao J, Sun YZ, Chen YY, Wei BJ, Zhang Y, Pan JQ (2016) Using potassium ferricyanide as a dopant to prepare K and Fe co-doped Li4Ti5O12. Ceram Int 42(16):19187–19194.  https://doi.org/10.1016/j.ceramint.2016.09.082 CrossRefGoogle Scholar
  6. He Y, Liu M, Huang Z, Zhang B, Yu Y, Li B, Kang F, Kim J (2013) Effect of solid electrolyte interface (SEI) film on cyclic performance of Li4Ti5O12 anodes for Li ion batteries. J Power Sources 239:269–276.  https://doi.org/10.1016/j.jpowsour. 2013.03.141 CrossRefGoogle Scholar
  7. Hou DF, Luo W, Huang YH, Yu JC, Hua XL (2013) Synthesis of porous Bi4Ti3O12 nanofibers by electrospinning and their enhanced visible-light-driven photocatalytic properties. Nano 5(5):2028–2035.  https://doi.org/10.1039/c2nr33750a Google Scholar
  8. Huang YD, Qi YL, Jia DZ, Wang XC, Guo ZP, Cho WI (2012) Synthesis and electrochemical properties of spinel Li4Ti5O12-xClx anode materials for lithium-ion batteries. J Solid State Electrochem 16(5):2011–2016.  https://doi.org/10.1007/s10008-011-1611-5 CrossRefGoogle Scholar
  9. Jeong G, Kim YU, Kim H, Kim HJ, Sohn HJ (2011) Prospective materials and applications for Li secondary batteries. Energy Environ Sci 4(6):1986–2002.  https://doi.org/10.1039/c0ee00831a CrossRefGoogle Scholar
  10. Jung JW, Lee CL, Yu S, Kim ID (2016) Electrospun nanofibers as a platform for advanced secondary batteries: a comprehensive review. J Mater Chem A 4(3):703–750.  https://doi.org/10.1039/C5TA06844D CrossRefGoogle Scholar
  11. Kim CJ, Norberg NS, Alexander CT, Kostecki R, Cabana J (2013) Mechanism of phase propagation during lithiation in carbon-free Li4Ti5O12 battery electrodes. Adv Funct Mater 23(9):1214–1222.  https://doi.org/10.1002/adfm.201201684 CrossRefGoogle Scholar
  12. Kim JG, Park MS, Hwang SM, Heo YU, Liao T, Sun Z, Park JH, Kim KJ, Jeong G, Kim YJ (2014) Back cover: Zr4+ doping in Li4Ti5O12 anode for lithium-ion batteries: open Li+ diffusion paths through structural imperfection. ChemSusChem 7(5):1490–1457.  https://doi.org/10.1002/cssc.201301393 CrossRefGoogle Scholar
  13. Lang LM, Xu Z (2015) In situ synthesis of porous Fe3O4/C microbelts and their enhanced electrochemical performance for lithium-ion batteries. ACS Appl Mater Interfaces 5(5):1698–1703.  https://doi.org/10.1021/am302753p CrossRefGoogle Scholar
  14. Le Y, Wu HB, Lou XW (2013) Mesoporous Li4Ti5O12 hollow spheres with enhanced lithium storage capability. Adv Mater 25:2296–2300.  http://doi.org/10.1002/adma.201204912
  15. Li H, Wang ZX, Chen LQ, Huang XJ (2009) Research on advanced materials for Li-ion batteries. Adv Mater 21(45):4593–4607.  https://doi.org/10.1002/adma.200901710 CrossRefGoogle Scholar
  16. Li JL, Li ZY, Zhao YG, Yang K, Gao F, Li X (2016a) Structure and electrochemical properties of Sm-doped Li4Ti5O12 as anode materials for lithium-ion battery. RSC Adv 6(19):15492–15500.  https://doi.org/10.1039/C5RA27142H CrossRefGoogle Scholar
  17. Li ZP, Han FC, Li C, Jiao XL, Chen DR (2016b) Hollow CeO2 dodecahedrons: one-step template synthesis and enhanced catalytic performance. RSC Adv 6(65):60975–60982.  https://doi.org/10.1039/C6RA11268D CrossRefGoogle Scholar
  18. Li D, Lu QF, Guo EY, Wei MZ, Xiu ZL, Ji XY (2017) Graphene membrane encapsulated Co3O4 nanotubes with superior capacity and stability as anode materials for lithium ion batteries. J Sol-Gel Sci Technol 82(1):75–84.  https://doi.org/10.1007/s10971-016-4274-y CrossRefGoogle Scholar
  19. Lu X, Zhao L, He XQ, Xiao RJ, Gu L, YS H, Li H, Wang ZX, Duan XF, Chen LQ, Maier J, Ikuhara YC (2012) Lithium storage in Li4Ti5O12 spinel: the full static picture from electron microscopy. Adv Mater 24(24):3233–3238.  https://doi.org/10.1002/adma.201200450 CrossRefGoogle Scholar
  20. Ma Y, Ding B, Ji G, Lee JY (2013) Carbon-encapsulated F-doped Li4Ti5O12 as a high rate anode material for Li+ batteries. ACS Nano 7(12):10870–10878.  https://doi.org/10.1021/nn404311x CrossRefGoogle Scholar
  21. Ouyang CY, Zhong ZY, Lei MS (2007) Ab initio studies of structural and electronic properties of Li4Ti5O12 spinel. Electrochem Commun 9(5):1107–1112.  https://doi.org/10.1016/j.elecom.2007.01.013 CrossRefGoogle Scholar
  22. Park H, Song T, Han H, Paik U (2013) Electrospun Li4Ti5O12 nanofibers sheathed with conductive TiN/TiOxNy layer as an anode material for high power Li-ion batteries. J Power Sources 244:726–730.  https://doi.org/10.1016/j.jpowsour.2012.11.078 CrossRefGoogle Scholar
  23. Qi YL, Huang YD, Jia DZ, Bao SJ, Guo ZP (2009) Preparation and characterization of novel spinel Li4Ti5O12-xBrx anode materials. Electrochim Acta 54(21):4772–4776.  https://doi.org/10.1016/j.electacta.2009.04.010 CrossRefGoogle Scholar
  24. Shen LF, Uchaker E, Zhang XG, Cao GZ (2012) Hydrogenated Li4Ti5O12 nanowire arrays for high rate lithium ion batteries. Adv Mater 24(48):6502–6506.  https://doi.org/10.1002/adma.201203151 CrossRefGoogle Scholar
  25. Shi YW, Zhang DY, Chang CK, Huang KJ, Holze R (2015) Enhanced electrochemical performance of oxygen-deficient Li4Ti5O12-x anode material induced by graphene oxide. J Alloys Compd 639:274–279.  https://doi.org/10.1016/j.jallcom.2015.03.152 CrossRefGoogle Scholar
  26. Wang SL, Zhang ZX, De Aniruddha, Yang Li, Hirano S (2014) Synthesis, characterization, and electrochemical performance of Ce-doped ordered macroporous Li3V2(PO4)3/C cathode materials for lithium ion batteries. Ind Eng Chem Res 53(50):19525–19532.  http://doi.org/10.1021/ie502917b
  27. Wu HL, Huang YD, Jia DZ, Guo ZP, Miao M (2012) Preparation and characterization of spinel Li4Ti5O12 nanoparticles anode materials for lithium ion battery. J Nanopart Res 14(1):713–720.  https://doi.org/10.1007/s11051-011-0713-4 CrossRefGoogle Scholar
  28. Yang XJ, Huang YD, Wang XC, Jia DZ, Pang WK, Guo ZP, Tang XC (2014) High rate capability coreeshell lithium titanate@ceria nanosphere anode material synthesized by one-pot co-precipitation for lithium-ion batteries. J Power Sources 257:280–285.  https://doi.org/10.1016/j.jpowsour.2014.02.005 CrossRefGoogle Scholar
  29. Yi TF, Wu JZ, Li M, Zhu YR, Xie Y, Zhu RS (2015) Enhanced fast charge-discharge performance of Li4Ti5O12 as anode materials for lithium-ion batteries by Ce and CeO2 modification using a facile method. RSC Adv 5(47):37367–37376.  https://doi.org/10.1039/C5RA00523J CrossRefGoogle Scholar
  30. Zhang SS (2006) The effect of the charging protocol on the cycle life of a Li-ion battery. J Power Sources 161(2):11385–11391.  https://doi.org/10.1016/j.jpowsour.2006.06.040 Google Scholar
  31. Zhang P, Huang YD, Jia W, Cai YJ, Wang XC, Guo Y, Jia DZ, Sun ZP, Guo ZP (2016a) Improved rate capability and cycling stability of novel terbium-doped lithium titanate for lithium-ion batteries. Electrochim Acta 210:935–941.  https://doi.org/10.1016/j.electacta.2016.06.017 CrossRefGoogle Scholar
  32. Zhang P, Huang YD, Jia W, Cai YJ, Wang XC, Guo Y, Jia DZ, Sun ZP, Wang RY, Tang XC, Wang LS (2016b) High rate capability of lithium chromium titanium oxide hierarchical mesoporous microspheres anode materials synthesized by a one-pot co-precipitation for lithium ion batteries. J Electrochem Soc 163(9):A1920–A1926.  https://doi.org/10.1149/2.0581609jes CrossRefGoogle Scholar
  33. Zhang QY, Liu Y, Lu HS, Tang DP, Ouyang CY, Zhang LZ (2016c) Ce3+-doped Li4Ti5O12 with CeO2 surface modification by a sol-gel method for high-performance lithium-ion batteries. Electrochim Acta 189:147–157.  https://doi.org/10.1016/j.electacta.2015.12.103 CrossRefGoogle Scholar
  34. Zhou XY, Tang JJ, Yang J, Zou YL, Wang SC, Xie J, Ma LL (2012) Effect of polypyrrole on improving electrochemical performance of silicon based anode materials. Electrochim Acta 70:296–303.  https://doi.org/10.1016/j.electacta.2012.03.098 CrossRefGoogle Scholar
  35. Zhou XY, Tang JJ, Yang J, Xie J, Huang B (2013) Seaweed-like porous carbon from the decomposition of polypyrrole nanowires for application in lithium ion batteries. J Mater Chem A 1(16):5037–5044.  https://doi.org/10.1039/c3ta10557a CrossRefGoogle Scholar
  36. Zhou G, Li F, Cheng HM (2014) Progress in flexible lithium batteries and future prospects. Energy Environ Sci 7(4):1307–1338.  https://doi.org/10.1039/c3ee43182g CrossRefGoogle Scholar
  37. Zhou TP, Feng XY, Guo X, Wu WW, Cheng S, Xiang HF (2015) Solid-state synthesis and electrochemical performance of Ce-doped Li4Ti5O12 anode materials for lithium-ion batteries. Electrochim Acta 174:369–375.  https://doi.org/10.1016/j.electacta.2015.06.021 CrossRefGoogle Scholar
  38. Zhu GN, Wang YG, Xia YY (2012) Ti-based compounds as anode materials for Li-ion batteries. Energy Environ Sci 5(5):6652–6667.  https://doi.org/10.1039/c2ee03410g CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2017

Authors and Affiliations

  • Xueyang Ji
    • 1
  • Dong Li
    • 1
  • Qifang Lu
    • 1
    Email author
  • Enyan Guo
    • 1
  • Linbing Yao
    • 1
  1. 1.Shandong Provincial Key Laboratory of Processing and Testing Technology of Glass & Functional Ceramics, School of Material Science and EngineeringQilu University of TechnologyJinanPeople’s Republic of China

Personalised recommendations