Abstract
Plasmonic metal nanoparticles have shown great promise in enhancing the light absorption of organic dyes and thus improving the performance of dye-sensitized solar cells (DSSCs). However, as the plasmon resonance of spherical nanoparticles is limited to a single wavelength maximum (e.g., ~ 520 nm for Au nanoparticles), we have here utilized silica-coated gold nanorods (Au@SiO2 NRs) to improve the performance at higher wavelengths as well. By adjusting the aspect ratio of the Au@SiO2 NRs, we can shift their absorption maxima to better match the absorption spectrum of the utilized dye (here we targeted the 600–800 nm range). The main challenge in utilizing anisotropic nanoparticles in DSSCs is their deformation during the heating step required to sinter the mesoporous TiO2 photoanode and we show that the Au@SiO2 NRs start to deform already at temperatures as low as 200 °C. In order to circumvent this problem, we incorporated the Au@SiO2 NRs in a TiO2 nanoparticle suspension that does not need high sintering temperatures to produce a functional photoanode. With various characterization methods, we observed that adding the plasmonic particles also affected the structure of the produced films. Nonetheless, utilizing this low-temperature processing protocol, we were able to minimize the structural deformation of the gold nanorods and preserve their characteristic plasmon peaks. This allowed us to see a clear redshift of the maximum in the incident photon-to-current efficiency spectra of the plasmonic devices (Δλ ~ 14 nm), which further proves the great potential of utilizing Au@SiO2 NRs in DSSCs.
Similar content being viewed by others
References
Albero J, Atienzar P, Corma A, Garcia H (2015) Efficiency records in mesoscopic dye-sensitized solar cells. Chem Rec 15:803–828. https://doi.org/10.1002/tcr.201500007
Alvarez-Puebla R, Liz-Marzán LM, García de Abajo FJ (2010) Light concentration at the nanometer scale. J Phys Chem Lett 1:2428–2434. https://doi.org/10.1021/jz100820m
Atwater HA, Polman A (2010) Plasmonics for improved photovoltaic devices. Nat Mater 9:205–213. https://doi.org/10.1038/nmat2629
Bai L, Li M, Guo K, Luoshan M, Mehnane HF, Pei L, Pan M, Liao L, Zhao X (2014) Plasmonic enhancement of the performance of dye-sensitized solar cell by core–shell AuNRs@SiO2 in composite photoanode. J Power Sources 272:1100–1105. https://doi.org/10.1016/j.jpowsour.2014.09.083
Bohren CF, Huffman DR (2004) Absorption and scattering of light by small particles. John Wiley & SonsInc. WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. https://doi.org/10.1002/9783527618156
Brown MD, Suteewong T, Kumar RSS, D’Innocenzo V, Petrozza A, Lee MM, Wiesner U, Snaith HJ (2011) Plasmonic dye-sensitized solar cells using core−shell metal−insulator nanoparticles. Nano Lett 11:438–445. https://doi.org/10.1021/nl1031106
Carretero-Palacios S, Calvo ME, Míguez H (2015) Absorption enhancement in organic–inorganic halide perovskite films with embedded plasmonic gold nanoparticles. J Phys Chem C 119:18635–18640. https://doi.org/10.1021/acs.jpcc.5b06473
Catchpole KR, Polman A (2008) Plasmonic solar cells. Opt Express 16:21793. https://doi.org/10.1364/OE.16.021793
Chang S, Li Q, Xiao X, Wong KY, Chen T (2012) Enhancement of low energy sunlight harvesting in dye-sensitized solar cells using plasmonic gold nanorods. Energy Environ Sci 5:9444–9448. https://doi.org/10.1039/C2EE22657J
Cong H, Toftegaard R, Arnbjerg J, Ogilby PR (2010) Silica-coated gold nanorods with a gold overcoat: controlling optical properties by controlling the dimensions of a gold−silica−gold layered nanoparticle. Langmuir 26:4188–4195. https://doi.org/10.1021/la9032223
de Aberasturi DJ, Serrano-Montes AB, Liz-Marzán LM (2015) Modern applications of plasmonic nanoparticles: from energy to health. Adv Opt Mater 3:602–617. https://doi.org/10.1002/adom.201500053
Epifani M, Helwig A, Arbiol J, Díaz R, Francioso L, Siciliano P, Mueller G, Morante JR (2008) TiO2 thin films from titanium butoxide: synthesis, Pt addition, structural stability, microelectronic processing and gas-sensing properties. Sensors Actuators B Chem 130:599–608. https://doi.org/10.1016/j.snb.2007.10.016
Erwin WR, Zarick HF, Talbert EM, Bardhan R (2016) Light trapping in mesoporous solar cells with plasmonic nanostructures. Energy Environ Sci 9:1577–1601. https://doi.org/10.1039/C5EE03847B
Gangishetty MK, Lee KE, Scott RWJ, Kelly TL (2013) Plasmonic enhancement of dye sensitized solar cells in the red-to-near-infrared region using triangular core–shell Ag@SiO2 nanoparticles. ACS Appl Mater Interfaces 5:11044–11051. https://doi.org/10.1021/am403280r
Gu M, Ouyang Z, Jia B, Stokes N, Chen X, Fahim N, Li X, Ventura MJ, Shi Z (2012) Nanoplasmonics: a frontier of photovoltaic solar cells. Nano 1:235–248. https://doi.org/10.1515/nanoph-2012-0180
Guerrero-Martínez A, Pérez-Juste J, Liz-Marzán LM (2010) Recent progress on silica coating of nanoparticles and related nanomaterials. Adv Mater 22:1182–1195. https://doi.org/10.1002/adma.200901263
Hou W, Cronin SB (2013) A review of surface plasmon resonance-enhanced photocatalysis. Adv Funct Mater 23:1612–1619. https://doi.org/10.1002/adfm.201202148
Jang YH, Jang YJ, Kim S, Quan LN, Chung K, Kim DH (2016) Plasmonic solar cells: from rational design to mechanism overview. Chem Rev 116:14982–15034. https://doi.org/10.1021/acs.chemrev.6b00302
Johansson V, Ellis-Gibbings L, Clarke T, Gorlov M, Andersson GG, Kloo L (2014) On the correlation between dye coverage and photoelectrochemical performance in dye-sensitized solar cells. Phys Chem Chem Phys 16:711–718. https://doi.org/10.1039/C3CP52486H
Kale MJ, Avanesian T, Christopher P (2014) Direct photocatalysis by plasmonic nanostructures. ACS Catal 4:116–128. https://doi.org/10.1021/cs400993w
Khlebtsov NG, Dykman LA (2010) Optical properties and biomedical applications of plasmonic nanoparticles. J Quant Spectrosc Radiat Transf 111:1–35. https://doi.org/10.1016/j.jqsrt.2009.07.012
Kim H, Hwang T (2014) Effect of titanium isopropoxide addition in low-temperature cured TiO2 photoanode for a flexible DSSC. J Sol-Gel Sci Technol 72:67–73. https://doi.org/10.1007/s10971-014-3427-0
Koenderink AF, Alù A, Polman A (2015) Nanophotonics: shrinking light-based technology. Science 348:516–521. https://doi.org/10.1126/science.1261243
Lee C-R, Kim H-S, Park N-G (2011) Dependence of porosity, charge recombination kinetics and photovoltaic performance on annealing condition of TiO2 films. Front Optoelectron China 4:59–64. https://doi.org/10.1007/s12200-011-0205-2
Liu B-J, Lin K-Q, Hu S, Wang X, Lei Z-C, Lin H-X, Ren B (2015) Extraction of absorption and scattering contribution of metallic nanoparticles toward rational synthesis and application. Anal Chem 87:1058–1065. https://doi.org/10.1021/ac503612b
Long R, Li Y, Song L, Xiong Y (2015) Coupling solar energy into reactions: materials design for surface plasmon-mediated catalysis. Small 11:3873–3889. https://doi.org/10.1002/smll.201403777
Motl NE, Smith AF, DeSantis CJ, Skrabalak SE (2014) Engineering plasmonic metal colloids through composition and structural design. Chem Soc Rev 43:3823–3834. https://doi.org/10.1039/C3CS60347D
Murphy CJ, Sau TK, Gole AM, Orendorff CJ, Gao J, Gou L, Hunyadi SE, Li T (2005) Anisotropic metal nanoparticles: synthesis, assembly, and optical applications. J Phys Chem B 109:13857–13870. https://doi.org/10.1021/jp0516846
Nakade S, Matsuda M, Kambe S, Saito Y, Kitamura T, Sakata T, Wada Y, Mori H, Yanagida S (2002) Dependence of TiO2 nanoparticle preparation methods and annealing temperature on the efficiency of dye-sensitized solar cells. J Phys Chem B 106:10004–10010. https://doi.org/10.1021/jp020051d
Nikoobakht B, El-Sayed MA (2003) Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem Mater 15:1957–1962. https://doi.org/10.1021/cm020732l
Obare SO, Jana NR, Murphy CJ (2001) Preparation of polystyrene- and silica-coated gold nanorods and their use as templates for the synthesis of hollow nanotubes. Nano Lett 1:601–603. https://doi.org/10.1021/nl0156134
Pérez-Juste J, Pastoriza-Santos I, Liz-Marzán LM, Mulvaney P (2005) Gold nanorods: synthesis, characterization and applications. Coord Chem Rev 249:1870–1901. https://doi.org/10.1016/j.ccr.2005.01.030
Petrova H, Juste JP, Pastoriza-Santos I, Hartland GV, Liz-Marzán LM, Mulvaney P (2006) On the temperature stability of gold nanorods: comparison between thermal and ultrafast laser-induced heating. Phys Chem Chem Phys 8:814–821. https://doi.org/10.1039/B514644E
Pillai S, Green MA (2010) Plasmonics for photovoltaic applications. Sol Energy Mater Sol Cells 94:1481–1486. https://doi.org/10.1016/j.solmat.2010.02.046
Sandén S, Akitsu K, Törngren B, Ylinen A, Smått J-H, Kubo T, Matsumura M, Otani N, Segawa H, Österbacka R (2015) Plasmon-enhanced polymer-sensitized solar cells. J Phys Chem C 119:5570–5576. https://doi.org/10.1021/jp5097458
Scarabelli L, Sánchez-Iglesias A, Pérez-Juste J, Liz-Marzán LM (2015) A “tips and tricks” practical guide to the synthesis of gold nanorods. J Phys Chem Lett 6:4270–4279. https://doi.org/10.1021/acs.jpclett.5b02123
Schuller JA, Barnard ES, Cai W, Jun YC, White JS, Brongersma ML (2010) Plasmonics for extreme light concentration and manipulation. Nat Mater 9:193–204. https://doi.org/10.1038/nmat2630
Smith JG, Faucheaux JA, Jain PK (2015) Plasmon resonances for solar energy harvesting: a mechanistic outlook. Nano Today 10:67–80. https://doi.org/10.1016/j.nantod.2014.12.004
Sotiriou GA (2013) Biomedical applications of multifunctional plasmonic nanoparticles. Wiley Interdiscip Rev: Nanomed Nanobiotechnol 5:19–30. https://doi.org/10.1002/wnan.1190
Standridge SD, Schatz GC, Hupp JT (2009) Toward plasmonic solar cells: protection of silver nanoparticles via atomic layer deposition of TiO2. Langmuir 25:2596–2600. https://doi.org/10.1021/la900113e
Tokel O, Inci F, Demirci U (2014) Advances in plasmonic technologies for point of care applications. Chem Rev 114:5728–5752. https://doi.org/10.1021/cr4000623
Törngren B, Akitsu K, Ylinen A, Sandén S, Jiang H, Ruokolainen J, Komatsu M, Hamamura T, Nakazaki J, Kubo T, Segawa H, Österbacka R, Smått J-H (2014) Investigation of plasmonic gold–silica core–shell nanoparticle stability in dye-sensitized solar cell applications. J Colloid Interface Sci 427:54–61. https://doi.org/10.1016/j.jcis.2013.11.085
Wang J, Lee Y-J, Chadha AS, Yi J, Jespersen ML, Kelley JJ, Nguyen HM, Nimmo M, Malko AV, Vaia RA, Zhou W, Hsu JWP (2012) Effect of plasmonic Au nanoparticles on inverted organic solar cell performance. J Phys Chem C 117:85–97. https://doi.org/10.1021/jp309415u
Wong TKS (2017) Effect of embedded nanoparticle surface chemistry on plasmonic organic photovoltaic devices. Mater Renew Sustain Energy 6:4. https://doi.org/10.1007/s40243-017-0087-3
Ye Y, Jo C, Jeong I, Lee J (2013) Functional mesoporous materials for energy applications: solar cells, fuel cells, and batteries. Nano 5:4584–4605. https://doi.org/10.1039/C3NR00176H
Zayats AV, Smolyaninov II (2003) Near-field photonics: surface plasmon polaritons and localized surface plasmons. J Opt A Pure Appl Opt 5:S16. https://doi.org/10.1088/1464-4258/5/4/353
Zhang D, Yoshida T, Oekermann T, Furuta K, Minoura H (2006) Room-temperature synthesis of porous nanoparticulate TiO2 films for flexible dye-sensitized solar cells. Adv Funct Mater 16:1228–1234. https://doi.org/10.1002/adfm.200500700
Zhang R, Zhou Y, Peng L, Li X, Chen S, Feng X, Guan Y, Huang W (2016) Influence of SiO2 shell thickness on power conversion efficiency in plasmonic polymer solar cells with Au nanorod@SiO2 core-shell structures. Sci Rep 6:25036. https://doi.org/10.1038/srep25036
Funding
This study was funded by the Academy of Finland (grant numbers 259310, 271081, and 279055) and the Tiina and Antti Herlin Foundation (personal grant for A.T.).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Electronic supplementary material
ESM 1
(PDF 716 kb)
Rights and permissions
About this article
Cite this article
Törngren, B., Sandén, S., Nyman, J.O. et al. Minimizing structural deformation of gold nanorods in plasmon-enhanced dye-sensitized solar cells. J Nanopart Res 19, 365 (2017). https://doi.org/10.1007/s11051-017-4062-9
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11051-017-4062-9