Skip to main content
Log in

Ag nanowire-modified 1D α-Fe2O3 nanotube arrays for photocatalytic degradation of methylene blue

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

An in-situ photoreduction strategy is applied to coat Ag nanowires (NWs) directly onto the surface of one-dimensional (1D) α-Fe2O3 nanotube arrays (NTAs) fabricated by anodization treatment, and their chemical composition, morphologies, optical properties, and stability are systematically characterized. Structural characterization results manifest that Ag NWs are successfully anchored on α-Fe2O3 NTAs with the average nanotube diameter of 80 nm and confirm the formation of Ag/α-Fe2O3 NTA heterostructure. An apparent red shift in absorption edges of Ag/α-Fe2O3 NTAs is observed. Particularly, the 30-min Ag/α-Fe2O3 NTAs with Ag NW’s average length of 100 nm display the best photocatalytic ability for photocatalytic degradation of methylene blue (MB) dye under visible light illumination, owing to the synergistic effect of the localized surface plasmon resonance (LSPR) on Ag NWs as well as the synergistic effect on the electron delivery and effective separation of photogenerated carriers between Ag NWs and α-Fe2O3 NTAs. In addition, the photogenerated holes (h+) and superoxide radicals (O2 ·−) played crucial roles during the photocatalytic process.

Schematic illustration of the synergistic effect between Ag NWs and α-Fe2O3 NTA combined with conjectural photocatalytic degradation MB mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Chang CY, Wang CH, Tseng CJ et al (2012) Self-oriented iron oxide nanorod array thin film for photoelectrochemical hydrogen production[J]. Int J Hydrog Energy 37(18):13616–13622

    Article  Google Scholar 

  • Chen Y, Gao N, Jiang J (2013) Surface matters: enhanced bactericidal property of core-shell Ag-Fe2O3 nanostructures to their heteromer counterparts from one-pot synthesis[J]. Small 9(19):3242–3246

  • Chen Y, Dong L, Zhao M et al (2014) Ag2S-hollow Fe2O3 nanocomposites with NIR photoluminescence[J]. Chem Commun 50(78):11514–11516

    Article  Google Scholar 

  • Ding J, Zhang L, Liu Q et al (2017) Synergistic effects of electronic structure of WO3 nanorods with the dominant {001} exposed facets combined with silver size-dependent on the visible-light photocatalytic activity[J]. Appl Catal B Environ 203:335–342

    Article  Google Scholar 

  • Eom H, Lee J, Pichitpajongkit A et al (2014) Ag@Ni core-shell nanowire network for robust transparent electrodes against oxidation and sulfurization[J]. Small 10(20):4171–4181

    Google Scholar 

  • Fairfield JA, Ritter C, Bellew AT et al (2014) Effective electrode length enhances electrical activation of nanowire networks: experiment and simulation[J]. ACS Nano 8(9):9542–9549

    Article  Google Scholar 

  • Feng J, Fan D, Wang Q et al (2017) Facile synthesis silver nanoparticles on different xerogel supports as highly efficient catalysts for the reduction of p-nitrophenol[J]. Colloids Surf A Physicochem Eng Asp 520:743–756

    Article  Google Scholar 

  • Jiang Z, Jiang D, Hossain AMS et al (2015) In situ synthesis of silver supported nanoporous iron oxide microbox hybrids from metal-organic frameworks and their catalytic application in p-nitrophenol reduction[J]. Phys Chem Chem Phys 17(4):2550–2559

    Article  Google Scholar 

  • Kim T, Canlier A, Cho C et al (2014) Highly transparent Au-coated Ag nanowire transparent electrode with reduction in haze[J]. ACS Appl Mater Interfaces 6(16):13527–13534

    Article  Google Scholar 

  • Lagrange M, Langley DP, Giusti G et al (2015) Optimization of silver nanowire-based transparent electrodes: effects of density, size and thermal annealing[J]. Nano 7(41):17410–17423

    Google Scholar 

  • Li H, Zhao Q, Li X et al (2012) Photocatalytic degradation of gaseous toluene over hollow “spindle-like” α-Fe2O3 loaded with Ag[J]. Mater Res Bull 47(6):1459–1466

    Article  Google Scholar 

  • Li S, Hu S, Jiang W et al (2017a) Facile synthesis of flower-like Ag3VO4/Bi2WO6 heterojunction with enhanced visible-light photocatalytic activity[J]. J Colloid Interface Sci 501:156–163

    Article  Google Scholar 

  • Li S, Hu S, Xu K et al (2017b) Construction of fiber-shaped silver oxide/tantalum nitride pn heterojunctions as highly efficient visible-light-driven photocatalysts[J]. J Colloid Interface Sci 504:561–569

    Article  Google Scholar 

  • Li S, Hu S, Zhang J et al (2017c) Facile synthesis of Fe2O3 nanoparticles anchored on Bi2MoO6 microflowers with improved visible light photocatalytic activity[J]. J Colloid Interface Sci 497:93–101

    Article  Google Scholar 

  • Li S, Shen X, Liu J et al (2017d) Synthesis of Ta3N5/Bi2MoO6 core–shell fiber-shaped heterojunctions as efficient and easily recyclable photocatalysts[J]. Environ Sci: Nano 4(5):1155–1167

    Google Scholar 

  • Liu J, Zhang H, Tang D et al (2014) Carbon quantum dot/silver nanoparticle/polyoxometalate composites as photocatalysts for overall water splitting in visible light[J]. ChemCatChem 6(9):2634–2641

    Article  Google Scholar 

  • Liu Z, Tian X, Xu X et al (2017) Capacitance and voltage matching between MnO2 nanoflake cathode and Fe2O3 nanoparticle anode for high-performance asymmetric micro-supercapacitors[J]. Nano Res:1–11

  • Mahmoud MHH, Ismail AA, Sanad MMS (2012) Developing a cost-effective synthesis of active iron oxide doped titania photocatalysts loaded with palladium, platinum or silver nanoparticles[J]. Chem Eng J 187:96–103

    Article  Google Scholar 

  • Peerakiatkhajohn P, Yun JH, Chen H et al (2016) Stable hematite nanosheet photoanodes for enhanced photoelectrochemical water splitting[J]. Adv Mater 28(30):6405–6410

    Article  Google Scholar 

  • Qin J, Zeng H (2017) Photocatalysts fabricated by depositing plasmonic Ag nanoparticles on carbon quantum dots/graphitic carbon nitride for broad spectrum photocatalytic hydrogen generation[J]. Appl Catal B Environ 209:161–173

    Article  Google Scholar 

  • Ren H, Gou X, Yang Q (2017) Ultrathin Ag nanoparticles anchored on urchin-like WO3·0.33H2O for enhanced photocatalytic performance[J]. RSC Adv 7(20):12085–12088

    Article  Google Scholar 

  • Ruditskiy A, Xia Y (2016) Toward the synthesis of sub-15 nm Ag nanocubes with sharp corners and edges: the roles of heterogeneous nucleation and surface capping[J]. J Am Chem Soc 138(9):3161–3167

    Article  Google Scholar 

  • Sanad MMS, Shalan AE, Rashad MM et al (2015) Plasmonic enhancement of low cost mesoporous Fe2O3-TiO2 loaded with palladium, platinum or silver for dye sensitized solar cells (DSSCs)[J]. Appl Surf Sci 359:315–322

    Article  Google Scholar 

  • Shu Z, Zhang Y, Yang Q et al (2017) Halloysite nanotubes supported Ag and ZnO nanoparticles with synergistically enhanced antibacterial activity[J]. Nanoscale Res Lett 12(1):135

    Article  Google Scholar 

  • Silva RR d, Yang M, Choi SI et al (2016) Facile synthesis of sub-20 nm silver nanowires through a bromide-mediated polyol method[J]. ACS Nano 10(8):7892–7900

    Article  Google Scholar 

  • Song YJ, Wang M, Zhang XY et al (2014) Investigation on the role of the molecular weight of polyvinyl pyrrolidone in the shape control of high-yield silver nanospheres and nanowires[J]. Nanoscale Res Lett 9(1):17

    Article  Google Scholar 

  • Tanaka A, Nishino Y, Sakaguchi S et al (2013) Functionalization of a plasmonic Au/TiO2 photocatalyst with an Ag co-catalyst for quantitative reduction of nitrobenzene to aniline in 2-propanol suspensions under irradiation of visible light[J]. Chem Commun 49(25):2551–2553

    Article  Google Scholar 

  • Tian L, Xia K, Hu W et al (2017) A wide linear range and stable H2O2 electrochemical sensor based on Ag decorated hierarchical Sn3O4[J]. Electrochim Acta 231:190–199

    Article  Google Scholar 

  • Trung TN, Arepalli VK, Gudala R et al (2017) Polyol synthesis of ultrathin and high-aspect-ratio Ag nanowires for transparent conductive films[J]. Mater Lett 194:66–69

    Article  Google Scholar 

  • Wang C, Cheng B, Zhang H et al (2016) Probing the seeded protocol for high-concentration preparation of silver nanowires[J]. Nano Res 9(5):1532–1542

    Article  Google Scholar 

  • Xue J, Ma S, Zhou Y et al (2015) Fabrication of porous g-C3N4/Ag/Fe2O3 composites with enhanced visible light photocatalysis performance[J]. RSC Adv 5(72):58738–58745

    Article  Google Scholar 

  • Yang S, Nie C, Liu H et al (2013) Facile synthesis and catalytic application of Ag-Fe2O3-carbons nanocomposites[J]. Mater Lett 100:296–298

    Article  Google Scholar 

  • Yee MSL, Khiew PS, Lim SS et al (2017) Enhanced marine antifouling performance of silver-titania nanotube composites from hydrothermal processing[J]. Colloids Surf A Physicochem Eng Asp 520:701–711

    Article  Google Scholar 

  • Zhan K, Su R, Bai S et al (2016) One-pot stirring-free synthesis of silver nanowires with tunable lengths and diameters via a Fe3+ & Cl co-mediated polyol method and their application as transparent conductive films[J]. Nano 8(42):18121–18133

    Google Scholar 

  • Zhang X, Li H, Wang S et al (2014) Improvement of hematite as photocatalyst by doping with tantalum[J]. J Phys Chem C 118(30):16842–16850

    Article  Google Scholar 

  • Zhou X, Xiao Y, Wang M et al (2015) Highly enhanced sensing properties for ZnO nanoparticle-decorated round-edged α-Fe2O3 hexahedrons[J]. ACS Appl Mater Interfaces 7:8743–8749

    Article  Google Scholar 

  • Zou M, Li J, Wen WW et al (2014) Silver-incorporated composites of Fe2O3 carbon nanofibers as anodes for high-performance lithium batteries[J]. J Power Sources 270:468–474

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (no. 51171133, no. 51471122, and no. 51601136) and the Key Program of Natural Science Foundation of Hubei Province of China (no. 2015CFA128).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongwei Ni.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lei, R., Ni, H., Chen, R. et al. Ag nanowire-modified 1D α-Fe2O3 nanotube arrays for photocatalytic degradation of methylene blue. J Nanopart Res 19, 378 (2017). https://doi.org/10.1007/s11051-017-4055-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-017-4055-8

Keywords

Navigation