Skip to main content

Advertisement

Log in

Facile hydrothermal synthesis and characterization of cesium-doped PbI2 nanostructures for optoelectronic, radiation detection and photocatalytic applications

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Low-temperature hydrothermal-assisted synthesis of pure and cesium (Cs) (1, 3, 5, 7 and 10 wt%) doped lead iodide (PbI2) nanorods and nanosheets have been achieved successfully for the first time. The structural and vibrational studies confirm the formation of a 2H-polytypic PbI2 predominantly. Scanning electron microscope analysis confirms the formation of well-aligned nanorods of average size ~ 100 nm at low concentration and nanosheets of average thicknesses in the range of ~ 20–40 nm at higher concentrations of Cs doping. The presence of Cs doping was confirmed by energy dispersive X-ray study. Ultra-violet-visible absorbance spectra were recorded, and energy gap was calculated in the range of 3.33 to 3.45 eV for pure and Cs-doped PbI2 nanostructures which is higher than the bulk value (i.e., ~ 2.27 eV) due to quantum confinement effect. Dielectric constant, loss, and AC conductivity studies have been done. Enhancement in Gamma linear absorption coefficient due to Cs doping confirms the suitability of prepared nanostructures for radiation detection applications. Furthermore, the photocatalytic performance of the synthesized nanostructures was evaluated in the decolorization of methyl green (MG) and methyl orange (MO) under the illumination of visible light (λ > 420 nm). The observed photocatalytic activity for 5 and 7 wt% Cs-doped PbI2 was observed to be more than pure PbI2 and also > 10 times higher than the commercially available photocatalysts. The results suggest that the prepared nanostructures are highly applicable in optoelectronic, radiation detection and many other applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Ahn Y, Jeong Y, Lee D, Lee Y (2015) Copper nanowire–graphene core–shell nanostructure for highly stable transparent conducting electrodes. ACS Nano 9:3125–3133. https://doi.org/10.1021/acsnano.5b00053

    Article  Google Scholar 

  • Albrecht M, Green M (1977) The kinetics of the photolysis of thin films of lead iodide. J Phys Chem Solids 38:297–306

    Article  Google Scholar 

  • AL-Thabaiti SA, Obaid AY, Khan Z (2013) Synthesis of Poly (vinyl alcohol)-silver nanocomposites and effect of ctab on their morphology J Nanomater Mol Nanotechnol 2:1–10

  • Anis M, Shirsat M, Hussaini S, Joshi B, Muley G (2016) Effect of sodium metasilicate on structural, optical, dielectric and mechanical properties of ADP crystal J Mater Sci Technol 32:62–67

  • Antonuk L et al (2000) Strategies to improve the signal and noise performance of active matrix, flat-panel imagers for diagnostic x-ray applications. Medical Physics 27:289–306

    Article  Google Scholar 

  • Arico AS, Bruce P, Scrosati B, Tarascon J-M, van Schalkwijk W (2005) Nanostructured materials for advanced energy conversion and storage devices. Nat Mater 4:366–377

    Article  Google Scholar 

  • Baltog I, Baibarac M, Mihut L, Preda N, Velula T, Bucur C, Husanu M (2009) Vibrational properties of polyaniline functionalized PbI2 Rom. J Phys 54:677–688

    Google Scholar 

  • Barnakov YA, Ito S, Dmitruk I, Tsunekawa S, Kasuya A (2001) Production and optical study of PbI 2 nanorod-like particles. Scripta Materialia 45:273–277

    Article  Google Scholar 

  • Batra A, Carmichael-Owens C, Simmons M, Aggarwal M, Lal R (2005) Design of a solution crystal growth crystallizer with a versatile electronic reciprocal motion control for a crystals holder. Crys Res Technol 40:757–760

    Article  Google Scholar 

  • Baxter JB, Aydil ES (2005) Nanowire-based dye-sensitized solar cells. Appl Phys Letters 86:053114

    Article  Google Scholar 

  • Bennett PR et al (2003) Polycrystalline lead iodide films for digital X-ray sensors. Nucl Ins Methods Phys Res A: Accel Spectrometers, Detect Assoc Equip 505:269–272

    Article  Google Scholar 

  • Bhavsar D, Saraf K (2003) Optical and structural properties of Zn-doped lead iodide thin films. Mater Chem Phys 78:630–636

    Article  Google Scholar 

  • Burger C, Goerres G, Schoenes S, Buck A, Lonn A, von Schulthess G (2002) PET attenuation coefficients from CT images: experimental evaluation of the transformation of CT into PET 511-keV attenuation coefficients. Eur J Nucl Med Mol Imaging 29:922–927. https://doi.org/10.1007/s00259-002-0796-3

    Article  Google Scholar 

  • Bushberg JT, Boone JM (2011) The essential physics of medical imaging. Lippincott Williams & Wilkins, Philadelphia

  • Casady J, Johnson RW (1996) Status of silicon carbide (SiC) as a wide-bandgap semiconductor for high-temperature applications: a review. Solid-State Electron 39:1409–1422

    Article  Google Scholar 

  • Chakrabarty N, Mukherjee A, Sinha S, Basu S, Meikap A (2014) Observation of correlated barrier hopping in blue luminescent PbI 2. Nanoparticles Phys E: Low-dimens Syst Nanostructures 64:134–140

    Google Scholar 

  • Chen R, Wang R-J, Chen T, Shern C (2000) Studies on the dielectric properties and structural phase transition of K 2 SO 4 crystal. J Phys Chem Solids 61:519–527

    Article  Google Scholar 

  • Cheng C et al (2009) Hierarchical assembly of ZnO nanostructures on SnO2 backbone nanowires: low-temperature hydrothermal preparation and optical properties. ACS Nano 3:3069–3076

    Article  Google Scholar 

  • Chow TP, Tyagi R (1994) Wide bandgap compound semiconductors for superior high-voltage unipolar power devices. Electron Devices, IEEE Transactions on 41:1481–1483

    Article  Google Scholar 

  • Condeles J, Mulato M (2015a) Crystalline texture and mammography energy range detection studies of pyrolysed lead iodide films: effects of solution concentration. Mater Chem Phys 166:190–195

  • Condeles JF, Mulato M (2015b) Crystalline texture and mammography energy range detection studies of pyrolysed lead iodide films: effects of solution concentration. Mater Chem Phys 166:190–195. https://doi.org/10.1016/j.matchemphys.2015.09.048

    Article  Google Scholar 

  • Condeles J, Mulato M (2016) Polycrystalline lead iodide films produced by solution evaporation and tested in the mammography X-ray energy range. J Phys Chem Solids 89:39–44

    Article  Google Scholar 

  • Condeles J, Lofrano R, Rosolen J, Mulato M (2006) Stoichiometry, surface and structural characterization of lead iodide thin films. Brazilian J Phys 36:320–323

    Article  Google Scholar 

  • Condeles JF, Ghilardi Netto T, Mulato M (2007) Lead iodide films as X-ray sensors tested in the mammography energy region. Nucl Inst Methods Phys Res A: Accel, Spectrometers Detect Assoc Equip 577:724–728. https://doi.org/10.1016/j.nima.2007.04.139

    Article  Google Scholar 

  • Dag I, Lifshitz E (1996) Dynamics of recombination processes in PbI2 nanocrystals embedded in porous silica films. J Phys Chem 100:8962–8972. https://doi.org/10.1021/jp952863y

    Article  Google Scholar 

  • Dmitriev Y, Bennett PR, Cirignano LJ, Klugerman M, Shah KS (2009) The electrical response of PbI 2 films to γ-ray irradiation and the limitation of film thickness. Nucl Ins Methods Phys Res A: Accel Spectrometers Detect Assoc Equip 599:192–195

    Article  Google Scholar 

  • Dugan A, Henisch H (1967) Dielectric properties and index of refraction of lead iodide single crystals. J Phys Chem Solids 28:971–976

    Article  Google Scholar 

  • El-Mallah H (2012) AC electrical conductivity and dielectric properties of perovskite (Pb, Ca) TiO3 ceramic. Acta Phys Polonica-A Gen Phys 122:174

    Article  Google Scholar 

  • El-Mallah H, Hegab N (2007) Studies on ac properties of Ca1− x Sr x TiO3 perovskites. J Mater Sci 42:332–336

    Article  Google Scholar 

  • Empedocles S et al. (2005) Methods of making, positioning and orienting nanostructures, nanostructure arrays and nanostructure devices. Google Patents No. 6,962,823

  • Eperon GE, Paternò GM, Sutton RJ, Zampetti A, Haghighirad AA, Cacialli F, Snaith HJ (2015) Inorganic caesium lead iodide perovskite solar cells. J Mater Chem A 3:19688–19695

    Article  Google Scholar 

  • Farhadi-Khouzani M, Fereshteh Z, Loghman-Estarki MR, Razavi RS (2012) Different morphologies of ZnO nanostructures via polymeric complex sol–gel method: synthesis and characterization. J Sol-Gel Sci Technol 64:193–199

    Article  Google Scholar 

  • Feng M, Shen S-C, Caruth DC, Huang J-J (2004) Device technologies for RF front-end circuits in next-generation wireless communications. Proc IEEE 92:354–375

    Article  Google Scholar 

  • Gafoor AA, Thomas J, Musthafa M, Pradyumnan P (2011) Effects of Sm3+ doping on dielectric properties of anatase TiO2 nanoparticles synthesized by a low-temperature hydrothermal method. J Electron Mater 40:2152

    Article  Google Scholar 

  • Gafoor AA, Musthafa M, Pradyumnan P (2013) Effect of Nd3+ doping on optical and dielectric properties of TiO2 nanoparticles synthesized by a low temperature hydrothermal method. J Nanosci nanotechnol 1:53–57

    Google Scholar 

  • George MA, Azoulay M, Jayatirtha HN, Biao Y, Burger A, Collins WE, Silberman E (1994) Atomic force microscopy of lead iodide crystal surfaces. J Crys Growth 137:299–303. https://doi.org/10.1016/0022-0248(94)91289-0

    Article  Google Scholar 

  • Ghosh T, Bandyopadhyay S, Roy K, Kar S, Lahiri A, Maiti A, Goswami K (2008) Optical and structural properties of lead iodide thin films prepared by vacuum evaporation method. Cryst Res Technol 43:959–963

    Article  Google Scholar 

  • Glasser L, Hall P, Liebenberg D (1967) Dielectric properties of lead iodide. Journal of the Chemical Society A: Inorganic, Physical, Theoretical 0:295–296. https://doi.org/10.1039/J19670000295

  • Goldberg M, Langer R, Jia X (2007) Nanostructured materials for applications in drug delivery and tissue engineering. J Biomater Sci Polymer edition 18:241–268

    Article  Google Scholar 

  • Hamdy MS, Saputera WH, Groenen EJ, Mul G (2014) A novel TiO 2 composite for photocatalytic wastewater treatment. J Catal 310:75–83

    Article  Google Scholar 

  • Hassan MA, Jafar MM, Matuchova M, Bulos BN (2010) An experimental evidence of some lead iodide polytypes compatible with the dielectric functions model. J Appl Sci 10:3367–3373

    Article  Google Scholar 

  • Henisch HK (1996) Crystal growth in gels. Dover Publications INC, New York

  • Hill NE (1969) Dielectric properties and molecular behaviour. Van Nostrand Reinhold, New York

  • Hubbell JH (1982) Photon mass attenuation and energy-absorption coefficients. Int J Appl Radiat Isot 33:1269–1290. https://doi.org/10.1016/0020-708X(82)90248-4

    Article  Google Scholar 

  • Kasi GK, Dollahon NR, Ahmadi TS (2007) Fabrication and characterization of solid PbI2 nanocrystals. J Phys D: Appl Phys 40:1778

    Article  Google Scholar 

  • Kaviyarasu K, Devarajan PA, SSJ X, Thomas SA, Selvakumar S (2012a) One pot synthesis and characterization of cesium doped SnO 2 Nanocrystals via a hydrothermal process. J Mater Sci Technol 28:15–20

    Article  Google Scholar 

  • Kaviyarasu K, Sajan D, Selvakumar MS, Augustine Thomas S, Prem Anand D (2012b) A facile hydrothermal route to synthesize novel PbI2 nanorods. J Phys Chem Solids 73:1396–1400. https://doi.org/10.1016/j.jpcs.2012.06.005

    Article  Google Scholar 

  • Khilji M, Sherman W, Wilkinson G (1982) Raman study of three polytypes of PbI2 Journal of Raman Spectroscopy 13:127–133

  • Kirschman RK (1999) High temperature electronics. IEEE Press, New York, NY

    Google Scholar 

  • Koops C (1951) On the dispersion of resistivity and dielectric constant of some semiconductors at audiofrequencies. Phys Rev 83:121

    Article  Google Scholar 

  • Le Stanguennec M, Elliott S (1994) Frequency-dependent ionic conductivity in AgI-AgPO 3 glasses. Solid State Ionics 73:199–208

    Article  Google Scholar 

  • Lee W, Liu JF, Nowick A (1991) Limiting behavior of ac conductivity in ionically conducting crystals and glasses: a new universality. Phys Rev Letters 67:1559

    Article  Google Scholar 

  • Liang N et al (2014) AgIn x Ga 1− x S 2 solid solution nanocrystals: synthesis, band gap tuning and photocatalytic activity. Cryst EngComm 16:10123–10130

    Article  Google Scholar 

  • Lifshitz E, Yassen M, Bykov L, Dag I, Chaim R (1994) Nanometer-sized particles of lead iodide embedded in silica films. J Phys Chem 98:1459–1463

    Article  Google Scholar 

  • Luo P, Xia W, Zhou S, Sun L, Cheng J, Xu C, Lu Y (2016) Solvent engineering for ambient-air-processed, phase-stable CsPbI3 in perovskite solar cells. The Journal of Physical Chemistry Letters 7:3603–3608

    Article  Google Scholar 

  • Ma D, Zhang W, Zhang R, Zhang M, Xi G, Qian Y (2005) A facile hydrothermal synthesis route to single-crystalline lead iodide nanobelts and nanobelt bundles. J Nanosci Nanotechnol 5:810–813

    Article  Google Scholar 

  • Matuchova M, Zdansky K, Zavadil J, Maixner J, Alexiev D, Prochazkova D (2006) Study of lead iodide semiconductor crystals doped with silver. Mater Sci Semicond Proc 9:394–398

    Article  Google Scholar 

  • Mirabbaszadeh K, Ahmadi M, Khosravi M, Mokhtari R, Salari S (2013) Hydrothermal synthesis of vertically aligned cesium-doped ZnO nanorods for solar cell applications. J Inorg Organomet Polym Mater 23:1219–1225

    Article  Google Scholar 

  • Mohammadikish M, Davar F, Loghman-Estarki MR (2015) Various morphologies of nano/micro PbS via green hydrothermal method. J Mater Sci: Mater Electron 26:2937–2946

    Google Scholar 

  • Mousa AM, Jamil SS, Ponpon JP (2012) Effect of doping and post annealing on PbI2 photoconductivity. J Mater Sci Eng 2:215–219

    Google Scholar 

  • Nambiar S, Yeow JT (2012) Polymer-composite materials for radiation protection. ACS Appl Mater Interfaces 4:5717–5726

    Article  Google Scholar 

  • Nambiar S, Osei EK, JTW Y (2015) Bismuth sulfide nanoflowers for detection of X-rays in the mammographic energy range. Sci Rep 5:9440. https://doi.org/10.1038/srep09440 http://www.nature.com/articles/srep09440#supplementary-information

    Article  Google Scholar 

  • Novosad IS, Novosad SS (2013) Spectral characteristics of europium-doped lead iodide. J Appl Spectros 80:191–196. https://doi.org/10.1007/s10812-013-9744-1

    Article  Google Scholar 

  • Park MH, Li JH, Kumar A, Li G, Yang Y (2009) Doping of the metal oxide nanostructure and its influence in organic electronics. Adv Funct Mater 19:1241–1246

    Article  Google Scholar 

  • Pawar R et al (2010) Surfactant assisted low temperature synthesis of nanocrystalline ZnO and its gas sensing properties. Sens Actuators B: Chem 151:212–218

    Article  Google Scholar 

  • Periyasamy BK, Jebas RS, Thailampillai B (2007) Synthesis and spectral studies of 2-aminopyridinium para-nitrobenzoate: a novel optoelectronic crystal. Mater Letters 61:1489–1491

    Article  Google Scholar 

  • Ponpon J (2005) Semiconductor detectors for 2D X-ray imaging. Nucl Inst Methods Phys Res A: Accel Spectrometers DetectAssoc Equip 551:15–26

    Article  Google Scholar 

  • Ponpon JP, Amann M (2004) Current instability and polarization phenomena in lead iodide crystalline detectors. Nucl Inst Methods Phys Res A: Accel Spectrometers Detect Assoc Equip 526:447–454. https://doi.org/10.1016/j.nima.2004.03.136

    Article  Google Scholar 

  • Ragupathi V, Krishnaswamy S, Sada S, Nagarajan GS, Raman S (2014) Toward p-type conduction in Cs-doped ZnO: an eco-friendly synthesis method. J Mater Sci 49:7418–7424

    Article  Google Scholar 

  • Rauf M, Meetani M, Hisaindee S (2011) An overview on the photocatalytic degradation of azo dyes in the presence of TiO 2 doped with selective transition metals. Desalination 276:13–27

    Article  Google Scholar 

  • Retif P, Pinel S, Toussaint M, Frochot C, Chouikrat R, Bastogne T, Barberi-Heyob M (2015) Nanoparticles for radiation therapy enhancement: the key parameters. Theranostics 5:1030

    Article  Google Scholar 

  • Roth S, Willig W (1971) Lead iodide nuclear particle detectors. Appl Phys Letters 18:328–330

    Article  Google Scholar 

  • Sabourimanesh A, Rashidi A, Marjani K, Motamedara P, Valizadeh Y (2015) Effects of process parameters on the size of nanostructure magnesium oxide synthesized by a surfactant and ligand assisted wet chemical method crystal structure. Theor Appl 4:28

    Google Scholar 

  • Sandroff C, Kelty S, Hwang D (1986) Clusters in solution: growth and optical properties of layered semiconductors with hexagonal and honeycombed structures. J Chem Phys 85:5337–5340

    Article  Google Scholar 

  • Scher E, Buretea MA, Chow C, Empedocles S, Meisel A, Parce JW (2005) Nanostructure and nanocomposite based compositions and photovoltaic devices, U.S. Patent No. 6,878,871. U.S. Patent and Trademark Office, Washington, DC

  • Sears WM, Klein M, Morrison J (1979) Polytypism and the vibrational properties of Pb I 2. Phys Rev B 19:2305

    Article  Google Scholar 

  • Sengupta A, Mandal K, Zhang J (2000) Ultrafast electronic relaxation dynamics in layered iodide semiconductors: a comparative study of colloidal BiI3 and PbI2 nanoparticles. J Phys Chem B 104:9396–9403

    Article  Google Scholar 

  • Shakir M, Kushwaha S, Maurya K, Arora M, Bhagavannarayana G (2009a) Growth and characterization of glycine picrate—remarkable second-harmonic generation in centrosymmetric crystal. J Crys Growth 311:3871–3875

    Article  Google Scholar 

  • Shakir M, Kushwaha S, Maurya K, Bhagavannarayana G, Wahab M (2009b) Characterization of ZnSe nanoparticles synthesized by microwave heating process. Solid State Commun 149:2047–2049

    Article  Google Scholar 

  • Shakir M, Singh B, Gaur R, Kumar B, Bhagavannarayana G, Wahab M (2009c) Dielectric behaviour and ac electrical conductivity analysis of ZnSe chalcogenide nanoparticles. Chalcogenide Letters 6:655–660

    Google Scholar 

  • Shakir M, Kushawaha S, Maurya K, Kumar S, Wahab M, Bhagavannarayana G (2010) Enhancement of second harmonic generation, optical and dielectric properties in L-asparagine monohydrate single crystals due to an improvement in crystalline perfection by annealing. J Appl Crystallog 43:491–497

    Article  Google Scholar 

  • Shanmugam G, Thirupugalmani K, Rakhikrishna R, Philip J, Brahadeeswaran S (2013) Thermophysical, mechanical and dielectric studies on piperidinium p-hydroxybenzoate. J Therm Anal Calorim 114:1245–1254

    Article  Google Scholar 

  • Shkir M, Aarya S, Singh R, Arora M, Bhagavannarayana G, Senguttuvan T (2012a) Synthesis of ZnTe nanoparticles by microwave irradiation technique, and their characterization. Nanosci Nanotechnol Letters 4:405–408

    Article  Google Scholar 

  • Shkir M, Abbas H, Khan ZR (2012b) Effect of thickness on the structural, optical and electrical properties of thermally evaporated PbI< sub> 2</sub> thin films. J Phys Chem Solids 73:1309–1313

    Article  Google Scholar 

  • Shkir M et al (2014) Optical spectroscopy, crystalline perfection, etching and mechanical studies on P-nitroaniline (PNA) single crystals. Opt Mater 36:675–681

    Article  Google Scholar 

  • Shkir M, Yahia IS, AlFaify S, Abutalib MM, Muhammad S (2016a) Facile synthesis of lead iodide nanostructures by microwave irradiation technique and their structural, morphological, photoluminescence and dielectric studies. J Mol Struc, 1110:83–90. https://doi.org/10.1016/j.molstruc.2016.01.014

  • Shkir M, Yahia IS, Ganesh V, Algarni H, AlFaify S (2016b) Facile hydrothermal-assisted synthesis of Gd3+ doped PbI2 nanostructures and their characterization. Mater Letters 176:135–138. https://doi.org/10.1016/J.Matlet.2016.04.062

    Article  Google Scholar 

  • Shkir M, AlFaify S, Yahia IS, Ganesh V, Shoukry H (2017) Microwave-assisted synthesis of Gd3+ doped PbI2. Hierarchical Nanostruct Optoelectron Radiat Detect Appl Phys B: Condens Matter 508:41–46. https://doi.org/10.1016/J.Physb.2016.12.016

    Google Scholar 

  • Srivastava P, Singh K (2014) Effects of Cs-doping on morphological, optical and electrical properties of Bi 2 Te 3 nanostructures. Mater Lett 136:337–340

    Article  Google Scholar 

  • Street RA et al. (1999) X-ray imaging using lead iodide as a semiconductor detector. In: Medical Imaging’99. International Society for Optics and Photonics, pp 36–47. https://dx.doi.org/10.1117/12.349504

  • Street R et al (2002) Comparison of PbI2 and HgI2 for direct detection active matrix x-ray image sensors. J Appl Phys 91:3345–3355

    Article  Google Scholar 

  • Tang ZK, Nozue Y, Goto T (1995) Raman scattering in PbI2 clusters incorporated into zeolite cages. Mater Sci Eng: B 35:410–416. https://doi.org/10.1016/0921-5107(95)01394-6

    Article  Google Scholar 

  • Tonn J, Danilewsky AN, Cröll A, Matuchova M, Maixner J (2011) Czochralski growth of lead iodide single crystals: investigations and comparison with the Bridgman method. J Crys Growth 318:558–562. https://doi.org/10.1016/j.jcrysgro.2010.10.059

    Article  Google Scholar 

  • Tonn J, Matuchova M, Danilewsky AN, Cröll A (2015) Removal of oxidic impurities for the growth of high purity lead iodide single crystals. J Crys Growth 416:82–89. https://doi.org/10.1016/j.jcrysgro.2015.01.024

    Article  Google Scholar 

  • Tubbs M, Forty A (1964) Photographic applications of lead iodide. Br J Appl Phys 15:1553

    Article  Google Scholar 

  • Vavilov VS (1994) Physics and applications of wide bandgap semiconductors Physics-Uspekhi 37:269–277

  • Vogel R, Hoyer P, Weller H (1994) Quantum-sized PbS, CdS, Ag2S, Sb2S3, and Bi2S3 particles as sensitizers for various nanoporous wide-bandgap semiconductors the journal of physical chemistry 98:3183-3188

  • Warren R, Liang W (1993) Raman spectroscopy of new lead iodide intercalation compounds. J Phys: Condens Matter 5:6407

    Google Scholar 

  • Wilke K, Breuer H (1999) The influence of transition metal doping on the physical and photocatalytic properties of titania. J Photochem Photobiol A: Chem 121:49–53

    Article  Google Scholar 

  • Xu M, Zai J, Yuan Y, Qian X (2012) Band gap-tunable (CuIn) x Zn 2 (1− x) S 2 solid solutions: preparation and efficient photocatalytic hydrogen production from water under visible light without noble metals. J Mater Chem 22:23929–23934

    Article  Google Scholar 

  • Xue D, Kitamura K (2002) Dielectric characterization of the defect concentration in lithium niobate single crystals. Solid state Commun 122:537–541

    Article  Google Scholar 

  • Yu Y et al (2015) Development of lead iodide perovskite solar cells using three-dimensional titanium dioxide nanowire architectures. ACS Nano 9:564–572

    Article  Google Scholar 

  • Zentai G, Schieber M, Partain L, Pavlyuchkova R, Proano C (2005) Large area mercuric iodide and lead iodide X-ray detectors for medical and non-destructive industrial imaging. J Crys Growth 275:e1327–e1331. https://doi.org/10.1016/j.jcrysgro.2004.11.105

    Article  Google Scholar 

  • Zhang J, Song T, Zhang Z, Ding K, Huang F, Sun B (2015) Layered ultrathin PbI2 single crystals for high sensitivity flexible photodetectors. J Mater Chem C 3:4402–4406. https://doi.org/10.1039/c4tc02712d

    Article  Google Scholar 

  • Zhao G, Wu Y, Shao Y, Hao X (2016) Large-quantity and continuous preparation of two-dimensional nanosheets. Nanoscale 8(10):5407–5411

  • Zhu X, Wei Z, Jin Y, Xiang A (2007) Growth and characterization of a PbI2 single crystal used for gamma ray. Detect Crys Res Technol 42:456–459

    Article  Google Scholar 

  • Zhu G, Liu P, Hojamberdiev M, Zhou J-P, Huang X, Feng B, Yang R (2010) Controllable synthesis of PbI2 nanocrystals viaáaásurfactant-assisted hydrothermal route. Appl Phys A 98:299–304

    Article  Google Scholar 

  • Zhu X, Sun H, Yang D, Zheng X (2012) Growth, surface treatment and characterization of polycrystalline lead iodide thick films prepared using close space deposition technique, 10. Nucl Inst Methods Phys Res A: Accel spectrometers Detect Assoc Equip 691:–15. https://doi.org/10.1016/J.Nima.2012.07.003

Download references

Acknowledgements

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through research group program under grant number R.G.P.2/3/38.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mohd Shkir or S. AlFaify.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shkir, M., AlFaify, S., Yahia, I.S. et al. Facile hydrothermal synthesis and characterization of cesium-doped PbI2 nanostructures for optoelectronic, radiation detection and photocatalytic applications. J Nanopart Res 19, 328 (2017). https://doi.org/10.1007/s11051-017-4020-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-017-4020-6

Keywords

Navigation