Modification of a SAXS camera to study structures on multiple scales

Abstract

A compact small-angle X-ray scattering (SAXS) camera was modified in order to cover a significantly wider size range than that typically covered by conventional lab-based devices. A new housing with a larger sample-to-detector distance (230 → 1300 mm) was developed and a new focusing Göbel mirror was installed to provide a narrower beam width needed to detect scattering intensities very close to the primary beam. A new photon-counting detector was applied to probe the intensity at small scattering vectors while an imaging plate detector serves to simultaneously collect data at large scattering angles up to 90°. The relevant features of the camera are shown and discussed based on raytracing simulations and SAXS measurements, respectively. The minimum scattering vector could be decreased by a factor of 10 to a value of 0.008 nm−1 corresponding to structures up to 780 nm in size. Structural analyses of selected particle systems demonstrate ability of the modified camera to probe various structural parameters on multiple scales, e.g., crystallite size, primary particle size, aggregate size, and fractal dimensions. The modified camera system is promising for structural studies of particle formation and growth/aggregation mechanisms since it provides information on multiple scales ranging from angstroms to several hundred nanometers.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Notes

  1. 1.

    Full address: Clausthal University of Technology, Institute of Mechanical Process Engineering, Leibnizstrasse 19, D-38678 Clausthal-Zellerfeld

References

  1. Armbruster T, Danisi RM (2015) The power of databases: the RRUFF project. In: Lafuente B, Downs RT, Yang H, Stone N (eds) Highlights in mineralogical crystallography. Verlag Walter de Gruyter, Berlin, pp 1–30

    Google Scholar 

  2. Baksi A, Mitra A, Mohanty JS, Lee H, De G, Pradeep T (2015) Size evolution of protein-protected gold clusters in solution: a combined SAXS-MS investigation. J Phys Chem C 119:2148–2157. https://doi.org/10.1021/jp509332j

    Article  Google Scholar 

  3. Beaucage G (1995) Approximations leading to a unified exponential power-law approach to small-angle scattering. J Appl Crystallogr 28:717–728. https://doi.org/10.1107/s0021889895005292

    Article  Google Scholar 

  4. Bonse U, Hart M (1966) Small angle X-ray scattering by spherical particles of polystyrene and polyvinyltoluene. Z Phys 189:151–162. https://doi.org/10.1007/bf01327152

    Article  Google Scholar 

  5. Boukari H, Lin JS, Harris MT (1997) Small-angle X-ray scattering study of the formation of colloidal silica particles from alkoxides: primary particles or not? J Colloid Interface Sci 194:311–318. https://doi.org/10.1006/jcis.1997.5112

    Article  Google Scholar 

  6. Caetano BL, Meneau F, Santilli CV, Pulcinelli SH, Magnani M, Briois V (2014) Mechanisms of SnO2 nanoparticles formation and growth in acid ethanol solution derived from SAXS and combined Raman-XAS time-resolved studies. Chem Mater 26:6777–6785. https://doi.org/10.1021/cm5032688

    Article  Google Scholar 

  7. Chang H, Kim SJ, Jang HD, Choi JW (2008) Synthetic routes for titania nanoparticles in the flame spray pyrolysis. Colloids Surf A Physicochem Eng Asp 313:282–287. https://doi.org/10.1016/j.colsurfa.2007.04.111

    Article  Google Scholar 

  8. Conchuir BO, Harshe YM, Lattuada M, Zaccone A (2014) Analytical model of fractal aggregate stability and restructuring in shear flows. Ind Eng Chem Res 53:9109–9119. https://doi.org/10.1021/ie4032605

    Article  Google Scholar 

  9. Dreiss CA, Jack KS, Parker AP (2006) On the absolute calibration of bench-top small-angle X-ray scattering instruments: a comparison of different standard methods. J Appl Crystallogr 39:32–38. https://doi.org/10.1107/s0021889805033091

    Article  Google Scholar 

  10. Ehrl L, Soos M, Lattuada M (2009) Generation and geometrical analysis of dense clusters with variable fractal dimension. J Phys Chem B 113:10587–10599. https://doi.org/10.1021/jp903557m

    Article  Google Scholar 

  11. Fairen-Jimenez D, Carrasco-Marin F, Djurado D, Francoise B, Ehrburger-Dolle F, Moreno-Castilla C (2006) Surface area and microporosity of carbon aerogels from gas adsorption and small- and wide-angle X-ray scattering measurements. J Phys Chem B 110:8681–8688. https://doi.org/10.1021/jp055992f

    Article  Google Scholar 

  12. Fischer H, de Oliveira NM, Napolitano HB, Polikarpov I, Craievich AF (2010) Determination of the molecular weight of proteins in solution from a single small-angle X-ray scattering measurement on a relative scale. J Appl Crystallogr 43:101–109. https://doi.org/10.1107/s0021889809043076

    Article  Google Scholar 

  13. Freelon B, Suthar K, Ilavsky J (2013) A multi-length-scale USAXS/SAXS facility: 10-50 keV small-angle X-ray scattering instrument. J Appl Crystallogr 46:1508–1512. https://doi.org/10.1107/s0021889813021900

    Article  Google Scholar 

  14. Goertz V, Dingenouts N, Nirschl H (2009) Comparison of nanometric particle size distributions as determined by SAXS, TEM and analytical ultracentrifuge. Part Part Syst Charact 26:17–24. https://doi.org/10.1002/ppsc.200800002

    Article  Google Scholar 

  15. Goertz V, Gutsche A, Dingenouts N, Nirschl H (2012) Small-angle X-ray scattering study of the formation of colloidal SiO2 stober multiplets. J Phys Chem C 116:26938–26946. https://doi.org/10.1021/jp3111875

    Article  Google Scholar 

  16. Guinier A, Fournet G (1955) Small-angle scattering of X-rays. John Wiley & Sons, Inc., Hoboken

    Google Scholar 

  17. Guo X, Gutsche A, Nirschl H (2013a) SWAXS investigations on diffuse boundary nanostructures of metallic nanoparticles synthesized by electrical discharges. J Nanopart Res 15. https://doi.org/10.1007/s11051-013-2058-7

  18. Guo X, Gutsche A, Wagner M, Seipenbusch M, Nirschl H (2013b) Simultaneous SWAXS study of metallic and oxide nanostructured particles. J Nanopart Res 15. https://doi.org/10.1007/s11051-013-1559-8

  19. Guo X, Gao K, Gutsche A, Seipenbusch M, Nirschl H (2015a) Combined small- and wide-angle X-ray scattering studies on oxide-supported Pt nanoparticles prepared by a CVS and CVD process. Powder Technol 272:23–33. https://doi.org/10.1016/j.powtec.2014.11.028

    Article  Google Scholar 

  20. Guo X, Wagner M, Gutsche A, Meyer J, Seipenbusch M, Nirschl H (2015b) Laboratory SWAXS combined with a low-pressure impactor for quasi-online analysis of nanoparticles generated by spark discharge. J Aerosol Sci 85:17–29. https://doi.org/10.1016/j.jaerosci.2015.03.004

    Article  Google Scholar 

  21. Gutsche A, Daikeler A, Guo X, Dingenouts N, Nirschl H (2014) Time-resolved SAXS characterization of the shell growth of silica-coated magnetite nanocomposites. J Nanopart Res 16. https://doi.org/10.1007/s11051-014-2475-2

  22. Gutsche A, Dingenouts N, Guo X, Meier M, Nirschl H (2016) Probing the absolute scattering intensity by means of a laboratory-based small-angle X-ray scattering camera using an imaging plate detector. J Appl Crystallogr 49:15–23. https://doi.org/10.1107/s1600576715021469

    Article  Google Scholar 

  23. Hasmy A, Vacher R, Jullien R (1994) Small-angle scattering by fractal aggregates—a numerical investigation of the crossover between the fractal regime and the Porod regime. Phys Rev B 50:1305–1308. https://doi.org/10.1103/PhysRevB.50.1305

    Article  Google Scholar 

  24. Haynes WM (2015) CRC handbook of chemistry and physics, 96th edn. CRC Press, Boca Raton

    Google Scholar 

  25. Hontañón E, Palomares JM, Stein M, Guo X, Engeln R, Nirschl H, Kruis FE (2013) The transition from spark to arc discharge and its implications with respect to nanoparticle production. J Nanopart Res 15. https://doi.org/10.1007/s11051-013-1957-y

  26. Hontañón E, Palomares JM, Guo X, Engeln R, Nirschl H, Kruis FE (2014) Influence of the inter-electrode distance on the production of nanoparticles by means of atmospheric pressure inert gas dc glow discharge. J Phys D Appl Phys 47. https://doi.org/10.1088/0022-3727/47/41/415201

  27. Kell GS (1970) Isothermal compressibility of liquid water at 1 atm. J Chem Eng Data 15:119–122. https://doi.org/10.1021/je60044a003

    Article  Google Scholar 

  28. Masalov VM, Sukhinina NS, Kudrenko EA, Emelchenko GA (2011) Mechanism of formation and nanostructure of Stöber silica particles. Nanotechnology 22. https://doi.org/10.1088/0957-4484/22/27/275718

  29. Mylonas E, Svergun DI (2007) Accuracy of molecular mass determination of proteins in solution by small-angle X-ray scattering. J Appl Crystallogr 40:245–249. https://doi.org/10.1107/s002188980700252x

    Article  Google Scholar 

  30. Narayanan T, Diat O, Bösecke P (2001) SAXS and USAXS on the high brilliance beamline at the ESRF. Nucl Instrum Methods Phys Res Sect A 467:1005–1009. https://doi.org/10.1016/s0168-9002(01)00553-8

    Article  Google Scholar 

  31. Orthaber D, Bergmann A, Glatter O (2000) SAXS experiments on absolute scale with Kratky systems using water as a secondary standard. J Appl Crystallogr 33:218–225. https://doi.org/10.1107/s0021889899015216

    Article  Google Scholar 

  32. Philipse AP, Vanbruggen MPB, Pathmamanoharan C (1994) Magnetic silica dispersions—preparation and stability of surface-modified silica particles with a magnetic core. Langmuir 10:92–99. https://doi.org/10.1021/la00013a014

    Article  Google Scholar 

  33. Pontoni D, Narayanan T, Rennie AR (2002) Time-resolved SAXS study of nucleation and growth of silica colloids. Langmuir 18:56–59. https://doi.org/10.1021/la015503c

    Article  Google Scholar 

  34. Roth SV et al. (2006) Small-angle options of the upgraded ultrasmall-angle x-ray scattering beamline BW4 at HASYLAB. Rev Sci Instrum 77. https://doi.org/10.1063/1.2336195

  35. Samson RJ, Mulholland GW, Gentry JW (1987) Structural analysis of soot aggregates. Langmuir 3:272–281. https://doi.org/10.1021/la00074a022

    Article  Google Scholar 

  36. Scherrer P (1918) Bestimmung der Größe und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen. Math-Phys Kl 1918:98–100

    Google Scholar 

  37. Schmidt PW (1991) Small-angle scattering studies of disordered porous and fractal systems. J Appl Crystallogr 24:414–435. https://doi.org/10.1107/s0021889891003400

    Article  Google Scholar 

  38. Schwyn S, Garwn E, Schmidt-Ott A (1988) Aerosol generation by spark discharge. J Aerosol Sci 19:639–642

    Article  Google Scholar 

  39. Sorensen CM (2001) Light scattering by fractal aggregates: a review. Aerosol Sci Technol 35:648–687. https://doi.org/10.1080/02786820117868

    Article  Google Scholar 

  40. Sztucki M, Narayanana T, Beaucage G (2007) In situ study of aggregation of soot particles in an acetylene flame by small-angle X-ray scattering. J Appl Phys 101. https://doi.org/10.1063/1.2740341

  41. Tarasov A, Goertz V, Goodilin E, Nirschl H (2013) Hydrolytic stages of titania nanoparticles formation jointly studied by SAXS, DLS, and TEM. J Phys Chem C 117:12800–12805. https://doi.org/10.1021/jp312443u

    Article  Google Scholar 

  42. Tobler DJ, Benning LG (2013) In situ and time resolved nucleation and growth of silica nanoparticles forming under simulated geothermal conditions. Geochim Cosmochim Acta 114:156–168. https://doi.org/10.1016/j.gca.2013.03.045

    Article  Google Scholar 

  43. Wang F, Richards VN, Shields SP, Buhro WE (2014) Kinetics and mechanisms of aggregative nanocrystal growth. Chem Mater 26:5–21. https://doi.org/10.1021/cm402139r

    Article  Google Scholar 

  44. Wengeler R, Teleki A, Vetter M, Pratsinis SE, Nirschl H (2006) High-pressure liquid dispersion and fragmentation of flame-made silica agglomerates. Langmuir 22:4928–4935. https://doi.org/10.1021/la053283n

    Article  Google Scholar 

  45. Wu MK, Friedlander SK (1993) Note on the power law equation for fractal-like aerosol agglomerates. J Colloid Interface Sci 159:246–248. https://doi.org/10.1006/jcis.1993.1319

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Thomas Holz (AXO DRESDEN GmbH, Germany) for performing raytracing simulations of different types of Göbel mirrors and kindly providing the simulation results. The authors also thank Prof. Alfred Weber at the Institute of Mechanical Process Engineering, Clausthal University of Technology, for kindly providing the sample Pt nanoparticles.

Funding

The research work producing these results was funded by the German Research Foundation (DFG Ni 414/22-1 and Ni 414/24-1).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Alexander Gutsche.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Synopsis

The article deals with the modification of a self-engineered SAXS camera providing a promising laboratory-scaled instrument for simultaneously probing structural parameters on multiple scales ranging from angstroms to several hundred nanometers.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gutsche, A., Meier, M., Guo, X. et al. Modification of a SAXS camera to study structures on multiple scales. J Nanopart Res 19, 321 (2017). https://doi.org/10.1007/s11051-017-4017-1

Download citation

Keywords

  • SAXS
  • Ultrasmall angles
  • Nanoparticles
  • Multiple scales
  • Structural analysis
  • In situ particle characterization