Skip to main content
Log in

Asymmetric capacitors based on TiO2 and mesoporous MnO2 electrodes using neutral aqueous electrolyte

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Asymmetric capacitor based on TiO2 with the size range from 90 to 410 nm and mesoporous MnO2 (ca. 200–380 nm) electrodes has been successfully constructed and characterized in LiClO4 aqueous electrolyte. The samples of both metal oxides were fully characterized by scanning electron microscopy (SEM), X-ray powder diffraction (XRD), transmission electron microscopy (TEM), energy-dispersive X-ray analysis (EDX), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), N2 adsorption-desorption, and so on. The electrochemical capacitive performances of both electrode materials were evaluated by cyclic voltammetry and galvanostatic charge-discharge in 1 mol/L LiClO4 with a working voltage of 2.0 V. The discharge profile of the asymmetric capacitor exhibited an excellent capacitive behavior and good cycling stability after 2000 cycles. Moreover, the TiO2//MnO2 asymmetric capacitor possesses both higher energy density and power density (7.7 Wh/kg, 762.5 W/kg) than that of Maxsorb//Maxsorb symmetrical capacitor (7.0 Wh/kg, 400.0 W/kg).

A novel asymmetric capacitor based on TiO2 and mesoporous MnO2 electrodes has been successfully constructed and characterized in LiClO4 aqueous electrolyte.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Amitha FE, Reddy ALM, Ramaprabhu S (2009) A non-aqueous electrolyte-based asymmetric supercapacitor with polymer and metal oxide/multiwalled carbon nanotube electrodes. J Power Sources 11:725–729

    Google Scholar 

  • Arico AS, Bruce P, Scrosati B, Tarascon JM, Van Schalkwijk W (2005) Nanostructured materials for advanced energy conversion and storage devices. Nat Mater 4:366–377

    Article  Google Scholar 

  • Brezesinski T, Wang J, Polleux J, Dunn B, Tolbert SH (2009) Templated nanocrystal-based porous TiO2 films for next-generation electrochemical capacitors. J Am Chem Soc 131:1802–1809

    Article  Google Scholar 

  • Brousse T, Taberna PL, Crosnier O, Dugas R, Guillemet P, Scudeller Y, Zhou Y, Favier F, Belanger D, Simon P (2007) Long-term cycling behavior of asymmetric activated carbon/MnO2 aqueous electrochemical supercapacitor. J Power Sources 173:633–641

    Article  Google Scholar 

  • Du JM, Zhang JS, Kang DJ (2011) Controlled synthesis of anatase TiO2 nano-octahedra and nanospheres: shape-dependent effects on the optical and electrochemical properties. CrystEngComm 13:4270–4275

    Article  Google Scholar 

  • Fabregat-Santiago F, Randriamahazaka H, Zaban A, Garcia-Canadas J, Garcia-Belmonte G, Bisquert J (2006) Chemical capacitance of nanoporous-nanocrystalline TiO2 in a room temperature ionic liquid. Phys Chem Chem Phys 8:1827–1833

    Article  Google Scholar 

  • Fang Y, Luo B, Jia YY, Li XL, Wang B, Song Q, Kang FY, Zhi LJ (2012) Renewing functionalized graphene as electrodes for high-performance supercapacitors. Adv Mater 24:6348–6355

    Article  Google Scholar 

  • Fu SD, Ni JF, Xu Y, Zhang Q, Li L (2016) Hydrogenation driven conductive Na2Ti3O7 nanoarrays as robust binder-free anodes for sodium-ion batteries. Nano Lett 16:4544–4551

    Article  Google Scholar 

  • Gu JM, Liu X, Wang Z, Bian Z, Jin C, Sun X, Yin B, Wu T, Wang L, Tang S, Wang H, Gao FM (2017a) Controllable synthesis of nickel bicarbonate nanocrystals with high homogeneity for high-performance supercapacitor. Nanotechnology 28:345401

    Article  Google Scholar 

  • Gu JM, Fan XY, Liu X, Li SH, Wang Z, Tang SF, Yuan DL (2017b) Mesoporous manganese oxide with large specific surface area for high-performance asymmetric supercapacitor with enhanced cycling stability. Chem Eng J 324:35–43

    Article  Google Scholar 

  • Guo XL, Kuang M, Li F, Liu XY, Zhang YX, Dong F, Losic D (2016) Engineering of three dimensional (3-D) Diatom@TiO2@MnO2 composites with enhanced supercapacitor performance. Electrochim Acta 190:159–167

    Article  Google Scholar 

  • Hao L, Luo B, Li XL, Jin MH, Fang Y, Tang ZH, Jia YY, Liang MH, Thomas A, Yang JH, Zhi LJ (2012) Terephthalonitrile-derived nitrogen-rich networks for high performance supercapacitors. Energy Environ Sci 5:9747–9751

    Article  Google Scholar 

  • Hao L, Ning J, Luo B, Wang B, Zhang YB, Tang ZH, Yang JH, Thomas A, Zhi LJ (2015) Structural evolution of 2d microporous covalent triazine-based framework toward the study of high-performance supercapacitors. J Am Chem Soc 137:219–225

    Article  Google Scholar 

  • Jin WH, Cao GT, Sun JY (2008) Hybrid supercapacitor based on MnO2 and columned FeOOH using Li2SO4 electrolyte solution. J Power Sources 175:686–691

    Article  Google Scholar 

  • Kan K, Wang L, Yu P, Zhou W, Wang RH, Lin YF, Shi KY, Fu HG (2016) 3d interlayer nanohybrids composed of sulfamic-acid-doped pedot grown on expanded graphite for high-performance supercapacitors. ChemPlusChem 81:242–250

    Article  Google Scholar 

  • Kang ZH, Wang EB, Mao BD, Su ZM, Lei G, Lian SY, Lin X (2005) Controllable fabrication of carbon nanotube and nanobelt with a polyoxometalate-assisted mild hydrothermal process. J Am Chem Soc 127:6534–6535

    Article  Google Scholar 

  • Khomenko V, Raymundo-Pinero E, Beguin F (2006) Optimisation of an asymmetric manganese oxide/activated carbon capacitor working at 2 V in aqueous medium. J Power Sources 153:183–190

    Article  Google Scholar 

  • Kötz R, Carlen M (2000) Principles and applications of electrochemical capacitors. Electrochim Acta 45:2483–2498

    Article  Google Scholar 

  • Liu HB, Tian YH, Amal R, Wang DW (2016) An integrated nanocarbon-cellulose membrane for solid-state supercapacitors. Sci Bull 61:368–377

    Article  Google Scholar 

  • Lu XH, Wang GM, Zhai T, Yu MH, Gan JY, Tong YX, Li Y (2012) Hydrogenated TiO2 nanotube arrays for supercapacitors. Nano Lett 12:1690–1696

    Article  Google Scholar 

  • Lu XH, Yu MH, Wang GM, Zhai T, Xie SL, Ling YC, Tong YX, Li Y (2013) H-TiO2@ MnO2//H-TiO2@C core-shell nanowires for high performance and flexible asymmetric supercapacitors. Adv Mater 25:267–272

    Article  Google Scholar 

  • Ma FX, Yu L, Xu CY, Lou XW (2016) Self-supported formation of hierarchical NiCo2O4 tetragonal microtubes with enhanced electrochemical properties. Energy Environ Sci 9:862–866

    Article  Google Scholar 

  • Masuda Y, Kato K (2008) Nanocrystal assembled TiO2 particles prepared from aqueous solution. Cryst Growth Des 8:3213–3218

    Article  Google Scholar 

  • Moon GD, Joo JB, Dahl M, Jung H, Yin YD (2014) Nitridation and layered assembly of hollow TiO2 shells for electrochemical energy storage. Adv Funct Mater 24:848–856

    Article  Google Scholar 

  • Nelson BP, Candal R, Corn RM, Anderson MA (2000) Control of surface and Ζ potentials on nanoporous TiO2 films by potential-determining and specifically adsorbed ions. Langmuir 16:6094–6101

    Article  Google Scholar 

  • Ni JF, Li Y (2016) Carbon nanomaterials in different dimensions for electrochemical energy storage. Adv Energy Mater 6:1600278

  • Ni JF, Huang YY, Gao LJ (2013) A high-performance hard carbon for li-ion batteries and supercapacitors application. J Power Sources 223:306–311

    Article  Google Scholar 

  • Ni JF, Zhao Y, Liu TT, Zheng HH, Gao LJ, Yan CL, Li L (2014) Strongly coupled Bi2S3@CNT hybrids for robust lithium storage. Adv Energy Mater 4(16):1400798

  • Ni JF, Zhang L, Fu SD, Savilov SV, Aldoshin SM, Lu L (2015) A review on integrating nano-carbons into polyanion phosphates and silicates for rechargeable lithium batteries. Carbon 92:15–25

    Article  Google Scholar 

  • Ni JF, Fu SD, Wu C, Maier J, Yu Y, Li L (2016) Self-supported nanotube arrays of sulfur-doped TiO2 enabling ultrastable and robust sodium storage. Adv Mater 28:2259–2265

    Article  Google Scholar 

  • O'Regan B, Gratzel M (1991) A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353:737–740

    Article  Google Scholar 

  • Pell WG, Conway BE, Adams WA, de Oliveira J (1999) Electrochemical efficiency in multiple discharge recharge cycling of supercapacitors in hybrid EV applications. J Power Sources 80:134–141

    Article  Google Scholar 

  • Qiu TF, Luo B, Giersig M, Akinoglu EM, Hao L, Wang XJ, Shi L, Jin MH, Zhi LJ (2014) Au@MnO2 core-shell nanomesh electrodes for transparent flexible supercapacitors. Small 10:4136–4141

    Google Scholar 

  • Ragupathy P, Vasan HN, Munichandraiah N (2008) Synthesis and characterization of nano-MnO2 for electrochemical supercapacitor studies. J Electrochem Soc 155:A34–A40

    Article  Google Scholar 

  • Ragupathy P, Park DH, Campet G, Vasan HN, Hwang SJ, Choy JH, Munichandraiah N (2009) Remarkable capacity retention of nanostructured manganese oxide upon cycling as an electrode material for supercapacitor. J Phys Chem C 113:6303–6309

    Article  Google Scholar 

  • Ren WJ, Ai ZH, Jia FL, Zhang LZ, Fan XX, Zou ZG (2007) Low temperature preparation and visible light photocatalytic activity of mesoporous carbon-doped crystalline TiO2. Appl Catal B Environ 69:138–144

    Article  Google Scholar 

  • Shi L, He HY, Fang Y, Jia YY, Luo B, Zhi LJ (2014) Effect of heating rate on the electrochemical performance of MnOx@CNF nanocomposites as supercapacitor electrodes. Chin Sci Bull 59:1832–1837

    Article  Google Scholar 

  • Smatt JH, Weidenthaler C, Rosenholm JB, Linden M (2006) Hierarchically porous metal oxide monoliths prepared by the nanocasting route. Chem Mater 18:1443–1450

    Article  Google Scholar 

  • Subramanian V, Zhu HW, Vajtai R, Ajayan PM, Wei BQ (2005) Hydrothermal synthesis and pseudocapacitance properties of MnO2 nanostructures. J Phys Chem B 109:20207–20214

    Article  Google Scholar 

  • Tang HL, Xiong M, Qu DY, Liu D, Zhang ZJ, Xie ZZ, Wei X, Tu WM, Qu DY (2015) Enhanced supercapacitive performance on TiO2@C coaxial nano-rod array through a bio-inspired approach. Nano Energy 15:75–82

    Article  Google Scholar 

  • Tang Z, Tang CH, Gong H (2012) A high energy density asymmetric supercapacitor from nano-architectured Ni(OH)2/carbon nanotube electrodes. Adv Funct Mater 22:1272–1278

  • Toupin M, Brousse T, Bélanger D (2002) Influence of microstucture on the charge storage properties of chemically synthesized manganese dioxide. Chem Mater 14:3946–3952

    Article  Google Scholar 

  • Toupin M, Brousse T, Belanger D (2004) Charge storage mechanism of MnO2 electrode used in aqueous electrochemical capacitor. Chem Mater 16:3184–3190

    Article  Google Scholar 

  • Wagemaker M, Kentgens APM, Mulder FM (2002) Equilibrium lithium transport between nanocrystalline phases in intercalated TiO2 anatase. Nature 418:397–399

    Article  Google Scholar 

  • Wang P, Zakeeruddin SM, Moser JE, Humphry-Baker R, Comte P, Aranyos V, Hagfeldt A, Nazeeruddin MK, Gratzel M (2004) Stable new sensitizer with improved light harvesting for nanocrystalline dye-sensitized solar cells. Adv Mater 16:1806

    Article  Google Scholar 

  • Wang YG, Luo JY, Wang CX, Xia YY (2006) Hybrid aqueous energy storage cells using activated carbon and lithium-ion intercalated compounds II. Comparison of LiMn2O4, LiCo1/3Ni1/3Mn1/3O2, and LiCoO2 positive electrodes. J Electrochem Soc 153:A1425–A1431

    Article  Google Scholar 

  • Wang J, Polleux J, Lim J, Dunn B (2007) Pseudocapacitive contributions to electrochemical energy storage in TiO2 (anatase) nanoparticles. J Phys Chem C 111:14925–14931

    Article  Google Scholar 

  • Wang L, Sun L, Tian CG, Tan TX, Mu G, Zhang HX, Fu HG (2012) A novel soft template strategy to fabricate mesoporous carbon/graphene composites as high-performance supercapacitor electrodes. RSC Adv 2:8359–8367

    Article  Google Scholar 

  • Wang ZC, Wang Y, Shu X, Yu CP, Zhang JF, Cui JW, Qin YQ, Zheng HM, Zhang Y, Wu YC (2016) Hierarchical three-dimensional MnO2/carbon@TiO2 nanotube arrays for high-performance supercapacitors. RSC Adv 6:63642–63651

    Article  Google Scholar 

  • Wei WF, Cui XW, Chen WX, Ivey DG (2011) Manganese oxide-based materials as electrochemical supercapacitor electrodes. Chem Soc Rev 40:1697–1721

    Article  Google Scholar 

  • Xu MW, Jia W, Bao SJ, Su Z, Dong B (2010) Novel mesoporous MnO2 for high-rate electrochemical capacitive energy storage. Electrochim Acta 55:5117–5122

    Article  Google Scholar 

  • Yin J, Qi L, Wang HY (2011) Polyoxometalate-assisted synthesis of TiO2 nanoparticles and their applications in aqueous hybrid electrochemical capacitors. ACS Appl Mat Interfaces 3:4315–4322

    Article  Google Scholar 

  • Zhang Z, Wang CC, Zakaria R, Ying JY (1998) Role of particle size in nanocrystalline TiO2-based photocatalysts. J Phys Chem B 102:10871–10878

    Article  Google Scholar 

  • Zhang Y, Feng H, Wu XB, Wang LZ, Zhang AQ, Xia TC, Dong HC, Li XF, Zhang LS (2009) Progress of electrochemical capacitor electrode materials: a review. Int J Hydrogen Energ 34:4889–4899

    Article  Google Scholar 

  • Zhang YX, Kuang M, Hao XD, Liu Y, Huang M, Guo XL, Yan J, Han GQ, Li J (2014) Rational design of hierarchically porous birnessite-type manganese dioxides nanosheets on different one-dimensional titania-based nanowires for high performance supercapacitors. J Power Sources 270:675–683

    Article  Google Scholar 

  • Zhang J, Yang CP, Yin YX, Wan LJ, Guo YG (2016) Sulfur encapsulated in graphitic carbon nanocages for high-rate and long-cycle lithium-sulfur batteries. Adv Mater 28:9539–9544

    Article  Google Scholar 

  • Zhong WJ, Sang SB, Liu YY, Wu QM, Liu KY, Liu HT (2015) Electrochemically conductive treatment of TiO2 nanotube arrays in AlCl3 aqueous solution for supercapacitors. J Power Sources 294:216–222

    Article  Google Scholar 

  • Zhou H, Zhang YR (2014) Electrochemically self-doped TiO2 nanotube arrays for supercapacitors. J Phys Chem C 118:5626–5636

    Article  Google Scholar 

  • Zhou W, Sun FF, Pan K, Tian GH, Jiang BJ, Ren ZY, Tian CG, Fu HG (2011) Well-ordered large-pore mesoporous anatase TiO2 with remarkably high thermal stability and improved crystallinity: preparation, characterization, and photocatalytic performance. Adv Funct Mater 21:1922–1930

    Article  Google Scholar 

  • Zhou H, Zou XP, Zhang YR (2016) Fabrication of TiO2@MnO2 nanotube arrays by pulsed electrodeposition and their application for high-performance supercapacitors. Electrochim Acta 192:259–267

    Article  Google Scholar 

  • Zhu HM, Liu Q, Liu JY, Li RM, Zhang HS, Hu SX, Li ZS (2015) Construction of porous hierarchical manganese dioxide on exfoliated titanium dioxide nanosheets as a novel electrode for supercapacitors. Electrochim Acta 178:758–766

    Article  Google Scholar 

  • Zolfaghari A, Ataherian F, Ghaemi M, Gholami A (2007) Capacitive behavior of nanostructured MnO2 prepared by sonochemistry method. Electrochim Acta 52:2806–2814

    Article  Google Scholar 

Download references

Funding

This work was supported by National Natural Science Foundation of China (Nos. 21403189, 51608468), Natural Science Foundation of Hebei Province (No. B2017203198), China Postdoctoral Science Foundation (No. 2014M551047), and Yanshan University Doctoral Foundation (No. B790).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siheng Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(DOC 5928 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, J., Jin, C., Bian, Z. et al. Asymmetric capacitors based on TiO2 and mesoporous MnO2 electrodes using neutral aqueous electrolyte. J Nanopart Res 19, 322 (2017). https://doi.org/10.1007/s11051-017-4015-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-017-4015-3

Keywords

Navigation