Molecular dynamics study on structure stability, lattice variation, and melting behavior of silver nanoparticles

  • L. Chen
  • Q. WangEmail author
  • L. Xiong
Research Paper


Molecular dynamics simulation is used to comparatively investigate the structure stability, lattice variation, and surface energy of Ag nanoparticles. It is revealed that the most stable structure of shapes transformed from an octahedron to a cuboctahedron with the cluster size increasing, and the energetically larger lattice contraction of particles should have higher surface energy. Simulation also shows that the cubic shapes have contributed highly to the lattice contractions of particles, and the lattice constants of octahedral shapes are the nearest to bulk Ag. In addition, a systematic work on the melting behavior of polyhedral shapes is carried out by shape factor, and the surface energy-dependent shape evolution of Ag particles is revealed. The present results agree well with experimental observations in the literature, and provide a deep understanding of the different physical and chemical properties of Ag nanoparticles.


Silver nanoparticles Structure stability Lattice variation Melting behavior Molecular dynamics study Modeling and simulation 


Funding information

This research work was supported by the Youth Project of Science and Technology of Jiangxi Provincial Education Development (Grant No. GJJ160714), Natural Science Foundation of Jiangxi Province (Grant No. 20171BBB216002), Science Foundation of Aeronautics of China (Grant No. 2016ZF56022), and the National Natural Science Foundation of China (Grant No. 51463017).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Ali S, Myasnichenko VS, Neyts EC (2016) Size-dependent strain and surface energies of gold nanoclusters. Phys Chem Chem Phys 18:792–800CrossRefGoogle Scholar
  2. Baletto F, Mottet C, Ferrando R (2002) Freezing of silver nanodroplets. Chem Phys Lett 354:82–87CrossRefGoogle Scholar
  3. Barber CB, Dobkin DP, Huhdanpaa H (1996) The quickhull algorithm for convex hulls. ACM T Math Software 22:469–483CrossRefGoogle Scholar
  4. Binkowski I, Shrivastav GP, Horbach J, Divinski SV, Wilde G (2016) Shear band relaxation in a deformed bulk metallic glass. Acta Mater 109:330–340CrossRefGoogle Scholar
  5. Chen L, Fan JL, Gong HR (2017) Phase transition and mechanical properties of tungsten nanomaterials from molecular dynamic simulation. J Nanopart Res 19:118CrossRefGoogle Scholar
  6. Darbha GK, Ray A, Ray PC (2007) Gold nanoparticle-based miniaturized nanomaterial surface energy transfer probe for rapid and ultrasensitive detection of mercury in soil, water, and fish. ACS Nano 1:208–214CrossRefGoogle Scholar
  7. Feng D, Feng Y, Yuan S, Zhang X, Wang G (2017) Melting behavior of Ag nanoparticles and their clusters. Appl Therm Eng 111:1457–1463CrossRefGoogle Scholar
  8. Häkkinen H, Abbet S, Sanchez A, Heiz U, Landman U (2003) Structural, electronic, and impurity-doping effects in nanoscale chemistry: supported gold nanoclusters. Angew Chem 42:1297–1300CrossRefGoogle Scholar
  9. Huang R, Wen YH, Zhu ZZ, Sun SG (2012) Pt−Pd bimetallic catalysts: structural and thermal stabilities of core−shell and alloyed nanoparticles. J Phys Chem C 116:8664–8671CrossRefGoogle Scholar
  10. Jiang Q, Liang LH, Zhao DS (2001) Lattice contraction and surface stress of fcc nanocrystals. J Phys Chem B 105:6275–6277CrossRefGoogle Scholar
  11. Jiang Q, Li JC, Chi BQ (2002) Size-dependent cohesive energy of nanocrystals. Chem Phys Lett 366:551–554CrossRefGoogle Scholar
  12. Lewis LN (1993) Chemical catalysis by colloids and clusters. Chem Rev 93:2693–2730CrossRefGoogle Scholar
  13. Li ZY, Young NP, Vece MD, Palomba S, Palmer RE, Bleloch AL, Curley BC, Johnston RL, Jiang J, Yuan J (2008) Three-dimensional atomic-scale structure of size-selected gold nanoclusters. Nature 451:46–49CrossRefGoogle Scholar
  14. Lim HS, Ong CK (1992) Stability of face-centered cubic and icosahedral lead clusters. Surf Sci 269(270):1109–1115CrossRefGoogle Scholar
  15. Liu Y, Wang C, Wei Y, Zhu L, Li D, Jiang JS, Markovic NM, Stamenkovic VR, Sun S (2011) Surfactant-induced postsynthetic modulation of Pd nanoparticle crystallinity. Nano Lett 11:1614–1617CrossRefGoogle Scholar
  16. Lu HM, Jiang Q (2004) Size-dependent surface energies of nanocrystals. J Phys Chem B 108:5617–5619CrossRefGoogle Scholar
  17. Medasani B, Vasiliev I (2009) Computational study of the surface properties of aluminum nanoparticles. Surf Sci 603:2042–2046CrossRefGoogle Scholar
  18. Medasani B, Park YH, Vasiliev I (2007) Theoretical study of the surface energy, stress, and lattice contraction of silver nanoparticles. Phys Rev B 75:235436CrossRefGoogle Scholar
  19. Neyts EC, Bogaerts A (2009) Numerical study of the size-dependent melting mechanisms of nickel nanoclusters. J Phys Chem C 113:2771–2776CrossRefGoogle Scholar
  20. Ouyang G, Wang CX, Yang GW (2009) Surface energy of nanostructural materials with negative curvature and related size effects. Chem Rev 109:4221–4247CrossRefGoogle Scholar
  21. Pavan L, Baletto F, Novakovic R (2015) Multiscale approach for studying melting transitions in CuPt nanoparticles. Phys Chem Chem Phys 17:28364–28371CrossRefGoogle Scholar
  22. Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comp Phys 117:1–19CrossRefGoogle Scholar
  23. Preston-Thomas H (1990) The International Temperature Scale of 1990 (ITS-90). Metrologia 27:3–10CrossRefGoogle Scholar
  24. Qi WH, Huang BY, Wang MP, Yin ZM, Li JJ (2009) Molecular dynamic simulation of the size-and shape-dependent lattice parameter of small platinum nanoparticles. J Nanopart Res 11:575–580CrossRefGoogle Scholar
  25. Rapallo A, Olmos-Asar JA, Oviedo OA, Ludueña M, Ferrando R, Mariscal MM (2012) Thermal properties of Co/Au nanoalloys and comparison of different computer simulation techniques. J Phys Chem C 116:17210–17218CrossRefGoogle Scholar
  26. Ruda M, Crespo EA, Debiaggic SR (2010) Atomistic modeling of H absorption in Pd nanoparticles. J Alloys Compd 495:471–475CrossRefGoogle Scholar
  27. Stich I, Car R, Parrinello M, Baroni S (1989) Conjugate gradient minimization of the energy functional: a new method for electronic structure calculation. Phys Rev B 39:4997–5004CrossRefGoogle Scholar
  28. Stukowski A (2010) Visualization and analysis of atomistic simulation data with OVITO–the open visualization tool. Model Simul Mater Sc 18:015012CrossRefGoogle Scholar
  29. Sun J, He L, Lo YC, Xu T, Bi H, Sun L, Zhang Z, Mao SX, Li J (2014) Liquid-like pseudoelasticity of sub-10-nm crystalline silver particles. Nature Mater 13:1007–1012CrossRefGoogle Scholar
  30. Tao A, Sinsermsuksakul P, Yang P (2006) Polyhedral silver nanocrystals with distinct scattering signatures. Angew Chem 45:4597–4601CrossRefGoogle Scholar
  31. Wang Y, Teitel S, Dellago C (2004) Melting and equilibrium shape of icosahedral gold nanoparticles. Chem Phys Lett 394:257–261CrossRefGoogle Scholar
  32. Wang ZL, Zhong YQ, Wang SY (2012) A new shape factor measure for characterizing the cross-section of profiled fiber. Tex Res J 82:454CrossRefGoogle Scholar
  33. Wang Y, Wan D, Xie S, Xia X, Huang CZ, Xia Y (2013) Synthesis of silver octahedra with controlled sizes and optical properties via seed-mediated growth. ACS Nano 7:4586–4594CrossRefGoogle Scholar
  34. Wang Q, Chen L, Xiong L, Gong HR (2017) Mechanical and thermodynamic properties of cubic boron nitride from ab initio calculation. Journal of Physics and Chemistry of Solids 104:276–280CrossRefGoogle Scholar
  35. Wasserman HJ, Vermaak JS (1970) On the determination of a lattice contraction in very small silver particles. Surf Sci 22:164–172CrossRefGoogle Scholar
  36. Wu YN, Huang R, Zhang XM, Wen YH (2016) Octadecahedral and dodecahedral iron nanoparticles: an atomistic simulation on stability and shape evolutions. Phys Lett A 380:739–744CrossRefGoogle Scholar
  37. Zhou XW, Johnson RA, Wadley HNG (2004) Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers. Phys Rev B 69:144113CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringNanchang Hangkong UniversityNanchangChina
  2. 2.School of Environmental and Chemical EngineeringNanchang Hangkong UniversityNanchangChina

Personalised recommendations