Skip to main content

Advertisement

Log in

Mechanical bending induced catalytic activity enhancement of monolayer 1 T’-MoS2 for hydrogen evolution reaction

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

In this paper, mechanisms behind enhancement of catalytic activity of MoS2 mono-layer (three atomic layers) for hydrogen evolution reaction (HER) by mechanically applying bending strain were investigated using density functional theory. Results showed that with the increase of bending strains, the Gibbs free energy for hydrogen adsorption on the MoS2 mono-layer was decreased from 0.18 to −0.04 eV and to 0.13 eV for the bend strains applied along the zigzag and armchair directions, respectively. The mechanism for the enhanced catalytic activity comes from the changes of density of electronic states near the Fermi energy level, which are induced by the changes of the Mo-S and Mo-Mo bonds upon bending. This report provides a new design methodology to improve the catalytic activity of catalysts based on two-dimensional transition metal dichalcogenides through a simple mechanical bending.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • An YR, Fan XL, Luo ZF, Lau WM (2017) Nanopolygons of monolayer MS2: best morphology and size for HER catalysis. Nano Lett 17:368–376

    Article  Google Scholar 

  • Capitani F, Höppner M, Joseph B, Malavasi L, Artioli GA, Baldassarre L, Perucchi A, Piccinini M, Lupi S, Dore P (2013) Combined experimental and computational study of the pressure dependence of the vibrational spectrum of solid picene C22H14. Phys Rev B 88:4745–4751

    Article  Google Scholar 

  • Chen X, Wang Z, Qiu Y, Zhang J, Liu G, Zheng W, Feng W, Cao W, Hu P, Hu W (2016) Controlled growth of vertical 3D MoS2(1−x)Se2x nanosheets for an efficient and stable hydrogen evolution reaction. J Mater Chem A 4:18060–18066

    Article  Google Scholar 

  • Chou SS, Sai N, Lu P, Coker EN, Liu S, Artyushkova K, Luk TS, Kaehr B, Brinker CJ (2015) Understanding catalysis in a multiphasic two-dimensional transition metal dichalcogenide. Nat Commun 6:8311

    Article  Google Scholar 

  • Deng J, Yuan W, Ren P, Wang Y, Deng D, Zhang Z, Bao X (2014) High-performance hydrogen evolution electrocatalysis by layer-controlled MoS2 nanosheets. RSC Adv 4:34733–34738

    Article  Google Scholar 

  • Deng J, Li H, Xiao J, Tu Y, Deng D, Yang H, Tian H, Li J, Ren P, Bao X (2015) Triggering the electrocatalytic hydrogen evolution activity of the inert two-dimensional MoS2 surface via single-atom metal doping. Energy Environ Sci 8:1594–1601

    Article  Google Scholar 

  • Dunn S (2002) Hydrogen futures: toward a sustainable energy system. Int J Hydrogen Ene 27:235–264

    Article  Google Scholar 

  • Enyashin AN, Yadgarov L, Houben L, Popov I, Weidenbach M, Tenne R, Bar-Sadan M, Seifert G (2011) New route for stabilization of 1T-WS2 and MoS2 phases. J Phys Chem C 115:24586–24591

    Article  Google Scholar 

  • Fang YH, Liu ZP (2009) Surface phase diagram and oxygen coupling kinetics on flat and stepped Pt surfaces under electrochemical potentials. J Phys Chem C 113:9765–9772

    Article  Google Scholar 

  • Gao MR, Liang JX, Zheng YR, Xu YF, Jiang J, Gao Q, Li J, Yu SH (2015a) An efficient molybdenum disulfide/cobalt diselenide hybrid catalyst for electrochemical hydrogen generation. Nat Commun 6:36666

    Google Scholar 

  • Gao G, Jiao Y, Ma F, Jiao Y, Waclawik E, Du A (2015b) Charge mediated semiconducting-to-metallic phase transition in molybdenum disulfide monolayer and hydrogen evolution reaction in new 1T′-phase. J Phys Chem C 119:13124–13128

    Article  Google Scholar 

  • Greeley J, Jaramillo TF, Bonde J, Chorkendorff IB, Nørskov JK (2006) Computational high-throughput screening of electrocatalytic materials for hydrogen evolution. Nat Mater 5:909–913

    Article  Google Scholar 

  • He K, Poole C, Mak KF, Shan J (2013) Experimental demonstration of continuous electronic structure tuning via strain in atomically thin MoS2. Nano Lett 13:2931–2936

    Article  Google Scholar 

  • Hu T, Li R, Dong J (2013) A new (2×1) dimerized structure of monolayer 1T-molybdenum disulfide, studied from first principles calculations. J Chem Phys 139:174702

    Article  Google Scholar 

  • Jaramillo TF, Jørgensen KP, Bonde J, Nielsen JH, Horch S, Chorkendorff I (2007) Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science 317:100–102

    Article  Google Scholar 

  • Jiang L, Myer B, Tellefsen K, Pau S (2009) A planar microfabricated electrolyzer for hydrogen and oxygen generation. J Power Sources 188:256–260

    Article  Google Scholar 

  • Jiao Y, Zheng Y, Jaroniec M, Qiao SZ (2015) Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. Chem Soc Rev 44:2060–2086

    Article  Google Scholar 

  • Kresse G, Furthmüller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54:11169–11186

    Article  Google Scholar 

  • Kye J, Shin M, Lim B, Jang JW, Oh I, Hwang S (2013) Platinum monolayer electrocatalyst on gold nanostructures on silicon for photoelectrochemical hydrogen evolution. ACS Nano 7:6017–6023

    Article  Google Scholar 

  • Laursen AB, Kegnæs S, Dahl S, Chorkendorff I (2012) Molybdenum sulfides-efficient and viable materials for electro - and photoelectrocatalytic hydrogen evolution. Energy Environ Sci 5:5577–5591

    Article  Google Scholar 

  • Lee JH, Jang WS, Han SW, Baik HK (2014) Efficient hydrogen evolution by mechanically strained MoS2 nanosheets. Langmuir 30:9866–9873

    Article  Google Scholar 

  • Li Y, Wang H, Xie L, Liang Y, Hong G, Dai H (2011) MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction. J Am Chem Soc 133:7296–7299

    Article  Google Scholar 

  • Li BB, Qiao SZ, Zheng XR, Yang XJ, Cui ZD, Zhu SL, Li ZY, Liang YQ (2015) Pd coated MoS2 nanoflowers for highly efficient hydrogen evolution reaction under irradiation. J Power Sources 284:68–76

    Article  Google Scholar 

  • Lin YC, Dumcenco DO, Huang YS, Suenaga K (2014) Atomic mechanism of the semiconducting-to-metallic phase transition in single-layered MoS2. Nat Nanotech 9:391–396

    Article  Google Scholar 

  • Lloyd D, Liu X, Christopher JW, Cantley L, Wadehra A, Kim BL, Goldberg BB, Swan AK, Bunch JS (2016) Band gap engineering with ultralarge biaxial strains in suspended monolayer MoS2. Nano Lett 16:5836–5841

    Article  Google Scholar 

  • Nørskov JK, Bligaard T, Logadottir A, Kitchin JR, Chen JG, Pandelov S, Stimming U (2005) Trends in the exchange current for hydrogen evolution. J Electroch Soc 152:J23

    Article  Google Scholar 

  • Pack JD, Monkhorst HJ (1977) "special points for Brillouin-zone integrations"- a reply. Phys Rev B 16:1748–1749

    Article  Google Scholar 

  • Pan H (2014) Metal dichalcogenides monolayers: novel catalysts for electrochemical hydrogen production. Sci Rep 4:5348

    Article  Google Scholar 

  • Pan H (2016) Tension-enhanced hydrogen evolution reaction on vanadium disulfide monolayer. Nanoscale Res Lett 11:113

    Article  Google Scholar 

  • Pan H, Feng YP, Lin J (2010) Enhancement of hydrogen evolution on tungsten doped platinum. J Comput Theo Nanosci 7:547–551

    Article  Google Scholar 

  • Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865

  • Putungan DB, Lin SH, Kuo JL (2015) A first-principles examination of conducting monolayer 1T'-MX2 (M = Mo, W; X = S, se, Te): promising catalysts for hydrogen evolution reaction and its enhancement by strain. Phys Chem Chem Phys 17:21702–21708

    Article  Google Scholar 

  • Qian X, Liu J, Fu L, Li J (2014) Quantum spin hall effect in two-dimensional transition metal dichalcogenides. Science 346:1344–1347

    Article  Google Scholar 

  • Sahoo MPK, Wang J, Zhang Y, Shimada T, Kitamura T (2016) Modulation of gas adsorption and magnetic properties of monolayer-MoS2 by antisite defect and strain. J Phys Chem C 120:14113–14121

    Article  Google Scholar 

  • Schmickler W, Trasatti S (2006) Comment on Trends in the Exchange Current for Hydrogen Evolution. J Electrochem Soc 153:L31

    Article  Google Scholar 

  • Skulason E, Karlberg GS, Rossmeisl J, Bligaard T, Greeley J, Jonsson H, Norskov JK (2007) Density functional theory calculations for the hydrogen evolution reaction in an electrochemical double layer on the Pt(111) electrode. Phys Chem Chem Phys 9:3241–3250

    Article  Google Scholar 

  • Skúlason E, Tripkovic V, Björketun ME, Gudmundsdóttir S, Karlberg G, Rossmeisl J, Bligaard T, Jónsson H, Nørskov JK (2010) Comment on Trends in the Exchange Current for Hydrogen Evolution. J Electrochem Soc 153:L31

    Google Scholar 

  • Song I, Park C, Choi HC (2015) Synthesis and properties of molybdenum disulphide: from bulk to atomic layers. RSC Adv 5:7495–7514

    Article  Google Scholar 

  • Tang Q, Jiang D (2016) Mechanism of hydrogen evolution reaction on 1T-MoS2 from first principles. ACS Catal 6:4953–4961

    Article  Google Scholar 

  • Tong CJ, Zhang H, Zhang YN, Liu H, Liu LM (2014) New manifold two-dimensional single-layer structures of zinc-blende compounds. J Mater Chem A 2:17971–17978

    Article  Google Scholar 

  • Tsai C, Abild-Pedersen F, Norskov JK (2014) Tuning the MoS2 edge-site activity for hydrogen evolution via support interactions. Nano Lett 14:1381–1387

    Article  Google Scholar 

  • Tsai C, Chan K, Nørskov JK, Abild-Pedersen F (2015a) Rational design of MoS2 catalysts: tuning the structure and activity via transition metal doping. Catal Sci Technol 5:246–253

    Article  Google Scholar 

  • Tsai C, Chan K, Nørskov JK, Abild-Pedersen F (2015b) Theoretical insights into the hydrogen evolution activity of layered transition metal dichalcogenides. Surf Sci 640:133–140

    Article  Google Scholar 

  • Voiry D, Yamaguchi H, Li J, Silva R, Alves DC, Fujita T, Chen M, Asefa T, Shenoy VB, Eda G, Chhowalla M (2013a) Enhanced catalytic activity in strained chemically exfoliated WS2 nanosheets for hydrogen evolution. Nat Mater 12:850–855

    Article  Google Scholar 

  • Voiry D, Salehi M, Silva R, Fujita T, Chen M, Asefa T, Shenoy VB, Eda G, Chhowalla M (2013b) Conducting MoS2 nanosheets as catalysts for hydrogen evolution reaction. Nano Lett 13:6222–6227

    Article  Google Scholar 

  • Wang H, Tsai C, Kong D, Chan K, Abild-Pedersen F, Nørskov JK, Cui Y (2015) Transition-metal doped edge sites in vertically aligned MoS2 catalysts for enhanced hydrogen evolution. Nano Res 8:566–575

    Article  Google Scholar 

  • Wypych F, Schollhorn R (1992) 1T-MoS2, a new metallic modification of molybdenum disulfide. J Chem Soc, Chem Commun 1386-1388

  • Xia X, Zhao X, Ye W, Wang C (2014) Highly porous ag-Ag2S/MoS2 with additional active sites synthesized by chemical etching method for enhanced electrocatalytic hydrogen evolution. Electrochim Acta 142:173–181

    Article  Google Scholar 

  • Zhang T, Anderson AB (2007) Hydrogen oxidation and evolution on platinum electrodes in base: theoretical study. J Phys Chem C 111:8644–8648

    Article  Google Scholar 

  • Zhang J, Sasaki K, Sutter E, Adzic RR (2007) Stabilization of platinum oxygen-reduction electrocatalysts using gold clusters. Science 315:220–222

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (NFSC 11474047). Funding supports from UK Engineering Physics and Science Research Council (EPSRC EP/P018998/1), Newton Mobility Grant (IE161019) through Royal Society and NFSC, and Royal academy of Engineering UK-Research Exchange with China and India are also acknowledged. This work was carried out at National Supercomputer Center in Tianjin, and the calculations were performed on TianHe-1(A).

Funding

This study was funded by National Natural Science Foundation of China (11474047) and the Fundamental Research Funds for the Central Universities (ZYGX2016J202), and Newton Mobility Grant (IE161019).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhiguo Wang or Yong Qing Fu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, W., Wang, Z. & Fu, Y.Q. Mechanical bending induced catalytic activity enhancement of monolayer 1 T’-MoS2 for hydrogen evolution reaction. J Nanopart Res 19, 296 (2017). https://doi.org/10.1007/s11051-017-3996-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-017-3996-2

Keywords

Navigation