Skip to main content
Log in

Synthesis of silver nanoparticles in the presence of diethylaminoethyl-dextran hydrochloride polymer and their SERS activity

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

The silver nanoparticles (AgNPs) were synthesized upon γ-irradiation of AgNO3 precursor suspensions in the presence of diethylaminoethyl-dextran hydrochloride (DEAE-dextran) cationic polymer as a stabilizer. The dose rate of γ-irradiation was ~32 kGy h−1, and absorbed doses were 30 and 60 kGy. The γ-irradiation of the precursor suspension at acidic or neutral pH conditions produced predominantly the silver(I) chloride (AgCl) particles, because of the poor solubility of AgCl already present in the precursor suspension. The origin of AgCl in the precursor suspension was due to the presence of chloride ions in DEAE-dextran hydrochloride polymer. The addition of ammonia to the precursor suspension dissolved the AgCl precipitate, and the γ-irradiation of such colourless suspension at alkali pH produced a stable aqueous suspension with rather uniform spherical AgNPs of approximately 30 nm in size. The size of AgNPs was controlled by varying the AgNO3/DEAE-dextran concentration in the suspensions. The surface-enhanced Raman scattering (SERS) activities of synthesized AgNPs were examined using organic molecules rhodamine 6G, pyridine and 4-mercaptobenzoic acid (4-MBA). The NaBH4 was used as SERS aggregation agent. The SERS results have shown that in the presence of synthesized AgNPs, it was possible to detect low concentration of tested compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abedini A, Daud AR, Abdul Hamid MA, Kamil Othman N, Saion E (2013) A review on radiation-induced nucleation and growth of colloidal metallic nanoparticles. Nanoscale Res Lett 8(1):1–10. doi:10.1186/1556-276x-8-474

    Article  Google Scholar 

  • Abou El-Nour KMM, Eftaiha A, Al-Warthan A, Ammar RAA (2010) Synthesis and applications of silver nanoparticles. Arab J Chem 3(3):135–140. doi:10.1016/j.arabjc.2010.04.008

    Article  Google Scholar 

  • Afify TA, Saleh HH, Ali ZI (2015) Structural and morphological study of gamma-irradiation synthesizedsilver nanoparticles. Polym Compos doi:10.1002/pc.23866

  • Belloni J, Mostafavi M, Remita H, Marignier JL, Delcourt MO (1998) Radiation-induced synthesis of mono- and multi-metallic clusters and nanocolloids. New J Chem 22(11):1239–1255

    Article  Google Scholar 

  • Berthold HJ, Ludwig W, Wartchow R (1979) Verfeinerung der Kristallstruktur des Silberperchlorats AgClO4. Zeitschrift für Kristallographie - Crystalline Mater 149:327–335. doi:10.1524/zkri.1979.149.14.327

    Google Scholar 

  • Eliasson C, Lorén A, Engelbrektsson J, Josefson M, Abrahamsson J, Abrahamsson K (2005) Surface-enhanced Raman scattering imaging of single living lymphocytes with multivariate evaluation. Spectrochim Acta A Mol Biomol Spectrosc 61:755–760. doi:10.1016/j.saa.2004.05.038

  • Eom SY, Ryu SL, Kim HL, Kwon CH (2013) Systematic preparation of colloidal silver nanoparticles for effective SERS substrates. Colloids Surf A Physicochem Eng Asp 422:39–43. doi:10.1016/j.colsurfa.2013.01.036

    Article  Google Scholar 

  • Hanžić N, Jurkin T, Maksimović A, Gotić M (2015) The synthesis of gold nanoparticles by a citrate-radiolytical method. Radiat Phys Chem 106:77–82. doi:10.1016/j.radphyschem.2014.07.006

    Article  Google Scholar 

  • Henglein A, Giersig M (1999) Formation of Colloidal Silver Nanoparticles: Capping Action of Citrate. J Phys Chem B 103(44):9533–9539. doi:10.1021/jp9925334

  • Hoppe CE, Lazzari M, Pardiñas-Blanco I, López-Quintela MA (2006) One-step synthesis of gold and silver hydrosols using poly(N-vinyl-2-pyrrolidone) as a reducing agent. Langmuir 22(16):7027–7034. doi:10.1021/la060885d

    Article  Google Scholar 

  • Iravani S, Korbekandi H, Mirmohammadi SV, Zolfaghari B (2014) Synthesis of silver nanoparticles: chemical, physical and biological methods. Res Pharmaceut Sci 9(6):385–406

    Google Scholar 

  • Ishida R, Yamazoe S, Koyasu K, Tsukuda T (2016) Repeated appearance and disappearance of localized surface plasmon resonance in 1.2 nm gold clusters induced by adsorption and desorption of hydrogen atoms. Nano 8(5):2544–2547. doi:10.1039/c5nr06373f

    Google Scholar 

  • Janči T, Mikac L, Ivanda M, Marušić Radovčić N, Medić H, Vidaček S (2017) Optimization of parameters for histamine detection in fish muscle extracts by surface-enhanced Raman spectroscopy using silver colloid SERS substrates: Histamine detection in fish muscle extracts. J Raman Spectrosc 48:64–72. doi:10.1002/jrs.4991

  • Juby KA, Dwivedi C, Kumar M, Kota S, Misra HS, Bajaj PN (2012) Silver nanoparticle-loaded PVA/gum acacia hydrogel: synthesis, characterization and antibacterial study. Carbohydr Polym 89(3):906–913. doi:10.1016/j.carbpol.2012.04.033

    Article  Google Scholar 

  • Jurkin T, Gotić M, Štefanić G, Pucić I (2016a) Gamma-irradiation synthesis of iron oxide nanoparticles in the presence of PEO, PVP or CTAB. Radiat Phys Chem 124:75–83. doi:10.1016/j.radphyschem.2015.11.019

    Article  Google Scholar 

  • Jurkin T, Štefanić G, Dražić G, Gotić M (2016b) Synthesis route to δ-FeOOH nanodiscs. Mater Lett 173:55–59. doi:10.1016/j.matlet.2016.03.009

    Article  Google Scholar 

  • Keat CL, Aziz A, Eid AM, Elmarzugi NA (2015) Biosynthesis of nanoparticles and silver nanoparticles. Bioresour Bioprocess 2(1):1–11. doi:10.1186/s40643-015-0076-2

    Article  Google Scholar 

  • Krklješ AN, Marinović-Cincović MT, Kacarevic-Popovic ZM, Nedeljković JM (2007) Radiolytic synthesis and characterization of Ag-PVA nanocomposites. Eur Polym J 43(6):2171–2176. doi:10.1016/j.eurpolymj.2007.03.023

    Article  Google Scholar 

  • Kudelski A (2007) Some aspects of SERS temporal fluctuations: analysis of the most intense spectra of hydrogenated amorphous carbon deposited on silver. J Raman Spectrosc 38(11):1494–1499. doi:10.1002/jrs.1799

    Article  Google Scholar 

  • Kumari A, Yadav SK, Yadav SC (2010) Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf B: Biointerfaces 75(1):1–18. doi:10.1016/j.colsurfb.2009.09.001

    Article  Google Scholar 

  • Li T, Park HG, Choi SH (2007) γ-Irradiation-induced preparation of Ag and Au nanoparticles and their characterizations. Mater Chem Phys 105(2–3):325–330. doi:10.1016/j.matchemphys.2007.04.069

    Article  Google Scholar 

  • Long DA (2004) Infrared and Raman characteristic group frequencies. Tables and charts George Socrates John Wiley and Sons, Ltd, Chichester, Third Edition, 2001. Price £135. J Raman Spectrosc 35(10):905–905. doi:10.1002/jrs.1238

    Article  Google Scholar 

  • Lutterotti L, Matthies S, Wenk H-R (1999) MAUD (material analysis using diffraction): a user friendly Java program for Rietveld texture analysis and more. In: Proceeding of the twelfth international conference on textures of materials (ICOTOM-12). NRC Research Press, Ottowa, p 1599

  • Martina I, Wiesinger R, Jembrih-Simburger D, Schreiner M (2012) Micro-Raman characterisation of silver corrosion products: instrumental set up and reference database. e-PS 9:1–8

    Google Scholar 

  • Mikac L, Ivanda M, Gotić M, Mihelj T, Horvat L (2014) Synthesis and characterization of silver colloidal nanoparticles with different coatings for SERS application. J Nanopart Res 16:2748. doi:10.1007/s11051-014-2748-9

  • Morrow BJ, Matijević E, Goia DV (2009) Preparation and stabilization of monodisperse colloidal gold by reduction with aminodextran. J Colloid Interface Sci 335(1):62–69. doi:10.1016/j.jcis.2009.02.053

    Article  Google Scholar 

  • Pérez-Juste J, Liz-Marzán LM, Carnie S, Chan DYC, Mulvaney P (2004) Electric-Field-Directed Growth of Gold Nanorods in Aqueous Surfactant Solutions. Adv Func Mater 14(6):571–579. doi:10.1002/adfm.200305068

  • Pillai ZS, Kamat PV (2004) What Factors Control the Size and Shape of Silver Nanoparticles in the Citrate Ion Reduction Method? J Phys Chem B 108(3):945–951. doi:10.1021/jp037018r

  • Rao YN, Banerjee D, Datta A, Das SK, Guin R, Saha A (2010) Gamma irradiation route to synthesis of highly re-dispersible natural polymer capped silver nanoparticles. Radiat Phys Chem 79(12):1240–1246. doi:10.1016/j.radphyschem.2010.07.004

    Article  Google Scholar 

  • Reddy KR, Lee KP, Gopalan AI, Kim MS, Showkat AM, Nho YC (2006) Synthesis of metal (Fe or Pd)/Alloy (Fe-Pd)-nanoparticles-embedded multiwall carbon nanotube/sulfonated polyaniline composites by γ irradiation. J Polym Sci A Polym Chem 44(10):3355–3364. doi:10.1002/pola.21451

    Article  Google Scholar 

  • Rietveld H (1969) A profile refinement method for nuclear and magnetic structures. J Appl Crystallogr 2(2):65–71. doi:10.1107/S0021889869006558

    Article  Google Scholar 

  • Howard SA, Snyder RL (1983) An evaluation of some profile models and the optimization procedures used in profile fitting. Adv X-ray Anal 26:73–81

    Google Scholar 

  • Seino S, Kinoshita T, Otome Y, Maki T, Nakagawa T, Okitsu K, Mizukoshi Y, Nakayama T, Sekino T, Niihara K, Yamamoto TA (2004) γ-Ray synthesis of composite nanoparticles of noble metals and magnetic iron oxides. Scripta Mater 51(6):467–472. doi:10.1016/j.scriptamat.2004.06.003

    Article  Google Scholar 

  • Sondi I, Siiman O, Koester S, Matijević E (2000) Preparation of aminodextran-CdS nanoparticle complexes and biologically active antibody-aminodextran-CdS nanoparticle conjugates. Langmuir 16(7):3107–3118. doi:10.1021/la991109r

    Article  Google Scholar 

  • Stefanic G, Krehula S, Stefanic I (2013) The high impact of a milling atmosphere on steel contamination. Chem Commun 49(81):9245–9247. doi:10.1039/C3CC44803G

    Article  Google Scholar 

  • Strozyk MS, Chanana M, Pastoriza-Santos I, Pérez-Juste J, Liz-Marzán LM (2012) Protein/polymer-based dual-responsive gold nanoparticles with pH-dependent thermal sensitivity. Adv Funct Mater 22(7):1436–1444. doi:10.1002/adfm.201102471

    Article  Google Scholar 

  • Wyckoff RWG (1963) Crystal structures - volume 1. Interscience Publishers, New York

    Google Scholar 

  • Xiyun Z, Jie Z, Binsong W, Zada A, Humayun M (2015) Biochemical synthesis of ag/AgCl nanoparticles for visible-light-driven photocatalytic removal of colored dyes. Materials (1996–1944) 8(5):2043–2053. doi:10.3390/ma8052043

    Article  Google Scholar 

  • Yu WW, Chang E, Falkner JC, Zhang J, Al-Somali AM, Sayes CM, Johns J, Drezek R, Colvin VL (2007) Forming biocompatible and nonaggregated nanocrystals in water using amphiphilic polymers. J Am Chem Soc 129(10):2871–2879. doi:10.1021/ja067184n

    Article  Google Scholar 

Download references

Acknowledgements

This work has been supported by Croatian Center of Excellence for Advanced Materials and by the Ministry of Science and Technology of the Republic of Croatia, Project Number 098-0982904-2898. We thank Mr. Jasmin Forić for help in experimental work and Mr. Stanislav Martin for measuring the molar concentrations of silver nanoparticles in diluted suspensions. We thank Dr. Darija Domazet Jurašin for help in DLS measurements.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mile Ivanda or Marijan Gotić.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(DOCX 2578 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mikac, L., Jurkin, T., Štefanić, G. et al. Synthesis of silver nanoparticles in the presence of diethylaminoethyl-dextran hydrochloride polymer and their SERS activity. J Nanopart Res 19, 299 (2017). https://doi.org/10.1007/s11051-017-3989-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-017-3989-1

Keywords

Navigation