Skip to main content

Tailoring plasmonic properties of metal nanoparticle-embedded dielectric thin films: the sandwich method of preparation

Abstract

Tailoring of plasmonic properties of metal nanoparticle-embedded dielectric thin films are very crucial for many thin film-based applications. We, herein, investigate the various ways of tuning the plasmonic positions of gold nanoparticles (AuNPs)-embedded indium oxide thin films (Au:IO) through a sequence-specific sandwich method. The sandwich method is a four-step process involving deposition of In2O3 film by magnetron sputtering in first and fourth steps, thermal evaporation of Au on to In2O3 film in second and annealing of Au/In2O3 film in the third step. The Au:IO films were characterized by x-ray diffraction, spectrophotometry and transmission electron microscopy. The size and shape of the embedded nanoparticles were found from Rutherford back-scattering spectrometry. Based on dynamic Maxwell Garnett theory, the observed plasmon resonance position was ascribed to the oblate shape of AuNPs formed in sandwich method. Finally, through experimental data, it was shown that the plasmon resonance position of Au:IO thin films can be tuned by ~ 125 nm. The method shown here can be used to tune the plasmon resonance position over the entire range of visible region for the thin films made from other combinations of metal-dielectric pair.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Addison CJ, Konorov SO, Brolo AG, Blades MW, Turner RFB (2009) Tuning gold nanoparticle self-assembly for optimum coherent anti-stokes Raman scattering and second harmonic generation response. J Phys Chem C 113:3586–3592

    Article  Google Scholar 

  2. Barbosa S, Agrawal A, Lorenzo LR, Santos IP, Alvarez-Puebla RA, Kornowski A, Weller H, Liz-Marzan LM (2010) Tuning size and sensing properties in colloidal gold nanostars. Langmuir 26(18):14943–14950

    Article  Google Scholar 

  3. Barin I (1989) Thermo chemical data of pure substances, vols. I and II. VCH, Weinheim

    Google Scholar 

  4. Barradas NP (2007) Can quantum dots be analysed with macrobeam RBS? Nucl Instr Meth. B 261:435–438

    Article  Google Scholar 

  5. Barradas NP, García Núñez C, Cubero AR, Shen G, Kung P, Pau JL (2016) Analytical simulation of RBS spectra of nanowire samples. Nucl Instr Meth B 371:116–120

    Article  Google Scholar 

  6. Batra D, Seifert S, Varela LM, Liu ACY, Firestone MA (2007) Solvent-mediated plasmon tuning in a gold-nanoparticle–poly (ionic liquid) composite. Adv Funct Mater 17:1279–1287

    Article  Google Scholar 

  7. Bond GC, Thompson DT (1999) Catalysis by gold. Catal Rev Sci Eng 41:319–388

    Article  Google Scholar 

  8. Bora T, Zoepfl D, Dutta J (2016) Importance of plasmonic heating on visible light driven photocatalysis of gold nanoparticle decorated zinc oxide Nanorods. Sci Rep 6:26913

    Article  Google Scholar 

  9. Bruno G, Giuseppe VB, Maria MG, Alberto S, Pio C, Maria L (2010) A two-step plasma processing for gold nanoparticles supported on silicon near-infrared plasmonics. Appl Phys Lett 96:043104–043106

    Article  Google Scholar 

  10. Carretero-Palacios S, Calvo ME, Míguez H (2015) Absorption enhancement in organic−inorganic halide perovskite films with embedded plasmonic gold nanoparticles. J Phys Chem C 119:8635–18640

    Article  Google Scholar 

  11. Clavero C (2014) Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices. Nature 8:95–103

    Google Scholar 

  12. Doolittle LR (1985) Algorithms for the rapid simulation of Rutherford backscattering spectra. Nucl Instr Meth B 9:344–351

    Article  Google Scholar 

  13. Fujisawa H, Yuko M, Masaru S (2006) Fabrication of self-assembled Au nanodots and their applications to ferroelectric nanocapacitors. Jpn J Appl Phys 45:7262–7264

    Article  Google Scholar 

  14. Gans R (1912) Uber die form ultramikroskopischer goldteilchen. Ann Phys 37:881–887

    Article  Google Scholar 

  15. Garcia-Serrano J, Pal U (2003) Synthesis and characterization of Au nanoparticles in Al2O3 matrix. Int J Hydrogen Energ 28:637–640

    Article  Google Scholar 

  16. Ghosh P, Han G, De M, Kim CK, Rotello VM (2008) Gold nanoparticles in delivery applications. Adv Drug Deliver Rev 60:1307–1315

    Article  Google Scholar 

  17. Giordano S (2003) Effective medium theory for dispersions of dielectric ellipsoids. J Electrost 58:59–76

    Article  Google Scholar 

  18. Grand J, Adam PM, Grimault AS, Vial A, de la Chapelle ML, Bijeon JL, Kostcheev S, Royer P (2006) Optical extinction spectroscopy of oblate, Prolate and Ellipsoid Shaped Gold Nanoparticles, Experiments and Theory. Plasmonics 1:135–140

    Article  Google Scholar 

  19. Hansen M, Anderko K (1958) Constitution of binary alloys. McGraw Hill, New York

    Google Scholar 

  20. Heilmann A, Quinten M, Werner J (1998) Optical response of thin plasma-polymer films with non-spherical silver nanoparticles. Eur Phys J B 3:455–461

    Article  Google Scholar 

  21. Hornyak GL, Patrissi CJ, Martin CR, Valmalette JC, Dutta J, Hofman H (1997) Dynamical Maxwell Garnett optical modeling of nanogold-porous alumina composites, Mie and kappa influence on absorption maxima. Nanostruct Mater 9:575–578

    Article  Google Scholar 

  22. Hu M, Chen J, Zhi-Yuan L, Leslie A, Gregory VH, Xingde L, Manuel M, Younan X (2006) Gold nanostructures, engineering their plasmonic properties for biomedical applications. Chem Soc Rev 35:1084–1094

    Article  Google Scholar 

  23. Ivanova S, Petit C, Pitchon V (2004) A new preparation method for the formation of gold nanoparticles on an oxide support. Appl Catal A: General 267:191

    Article  Google Scholar 

  24. Jain PK, Xiaohua H, El-Sayed IH, El-Sayed MA (2007) Review of some interesting surface plasmon resonance-enhanced properties of noble metal nanoparticles and their applications to biosystems. Plasmonics 2:107–118

    Article  Google Scholar 

  25. Johnson PB, Christy RW (1972) Optical constants of noble metals. Phys Rev B 6:4370–4379

    Article  Google Scholar 

  26. Jonsson JN, Barka F, Castel X, Pisarek M, Bezzi Z, Boukherroub R, Szunerits S (2010) Development of new localized surface plasmon resonance interfaces based on gold nanostructures sandwiched between tin-doped indium oxide films. Langmuir 26:4266–4273

    Article  Google Scholar 

  27. Kelly KL, Coronado E, Zhao LZ, Schatz GC (2003) The optical properties of metal nanoparticles, the influence of size, shape, and dielectric environment. J Phys Chem B 107:668–677

    Article  Google Scholar 

  28. Kim JH, Baek KH, Kim CK, Kim YB, Yoon CS (2007) Formation of gold nanoparticles embedded in a polyimide film for nanofloating gate memory. Appl Phys Lett 90:123118

    Article  Google Scholar 

  29. Kling A, Ortiz MI, Sangrador J, Rodrıguez A, Rodrıguez A, Ballesteros C, Soares JC (2006) Combined RBS and TEM characterization of nano-SiGe layers embedded in SiO2. Nucl Instr Meth B 249:451–453

    Article  Google Scholar 

  30. Krpetic Z, Guerrini L, Larmour IA, Reglinski J, Faulds K, Graham D (2012) Importance of nanoparticle size in colorimetric and SERS-based multimodal trace detection of Ni(II) ions with functional gold nanoparticles. Small 8(5):707–714

    Article  Google Scholar 

  31. Kyoung M, Lee M (2000) Z-scan studies on the third-order optical nonlinearity of Au nanoparticles embedded in TiO2. Bull Kor Chem Soc 21:26–28

    Google Scholar 

  32. Liao HB, Xiao RF, Fu JS, Yu P, Wong GKL, Sheng P (1997) Large third-order optical nonlinearity in Au, SiO2 composite films near the percolation threshold. Appl Phys Lett 70:1–3

    Article  Google Scholar 

  33. Liao HB, Xiao RF, Fu JS, Wang H, Wong KS, Wong GKL (1998) Origin of third-order optical nonlinearity in Au, SiO2 composite films on femtosecond and picosecond time scales. Opt Lett 23:388–390

    Article  Google Scholar 

  34. Liao H, Lu W, Yu S, Wen W, Wong GKL (2005) Optical characteristics of gold nanoparticle-doped multilayer thin film. J Opt Soc Am B 22(9):1923–1926

    Article  Google Scholar 

  35. Liao H, Wen W, Wong GKL (2006) Photoluminescence from Au nanoparticles embedded in Au, oxide composite films. J Opt Soc Am B 23(12):2518–2521

    Article  Google Scholar 

  36. Link S, El-Sayed MA (1999) Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles. J Phys Chem B 103:4212–4217

    Article  Google Scholar 

  37. Liz-Marzan LM (2006) Tailoring surface plasmons through the morphology and assembly of metal nanoparticles. Langmuir 22:32–41

    Article  Google Scholar 

  38. Ma G, Sun W, Tang SH, Zhang H, Shen Z (2002) Size and dielectric dependence of the third-order nonlinear optical response of Au nanocrystals embedded in matrices. Opt Lett 27:1043–1045

    Article  Google Scholar 

  39. Mangelinck D, Lee PS, Osipowitcz T, Pey KL (2004) Analysis of laterally non-uniform layers and sub-micron devices by Rutherford backscattering spectrometry. Nucl Instr B 215:495–501

    Article  Google Scholar 

  40. Maxwell Garnett JC (1904) Colours in metal glasses and in metallic films. Philos Trans R Soc 203:385–420

    Article  Google Scholar 

  41. Mie G (1908) Contributions on the optics of turbid media, particularly colloidal metal solutions. Ann Phys 25:377–445

    Article  Google Scholar 

  42. Miller MM, Lazarides AA (2005) Sensitivity of metal nanoparticle surface plasmon resonance to the dielectric environment. J Phys Chem B 109:21556–21565

    Article  Google Scholar 

  43. Mohapatra S, Mishra YK, Avasthi DK, Kabiraj D, Ghatak J, Varma S (2007) Synthesis of Au nanoparticles in partially oxidized Si matrix by atom beam sputtering, J. Phys. D. Appl Phys 40:7063–7068

    Google Scholar 

  44. Nikoobakht B, El-Sayed MA (2003) Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem Mater 15(10):1957–1962

    Article  Google Scholar 

  45. Okumu J, Kohl D, Sprafke A, von Plessen G, Wuttig M (2010) Formation mechanism of noble metal nanoparticles in reactively sputtered TiO2 films. J Appl Phys 108:063529

    Article  Google Scholar 

  46. Pollonia R, Scremina BF, Calvellia P, Cattaruzzaa E, Battaglina G, Matteib G (2003) Metal nanoparticles–silica composites, Z-scan determination of non-linear refractive index. J Non-Cryst Solids 322:300–305

    Article  Google Scholar 

  47. Rasch MR, Sokolov KV, Korgel BA (2009) Limitations on the optical Tunability of small diameter gold Nanoshells. Langmuir 25(19):11777–11785

    Article  Google Scholar 

  48. Ryasnyanskiy AI, Palpant B, Debrus S, Pal U, Stepanov AL (2007) Optical nonlinearities of Au nanoparticles embedded in a zinc oxide matrix. Opt Commun 273:538–543

    Article  Google Scholar 

  49. Shen Z, Su L (2016) Plasmonic trapping and tuning of a gold nanoparticle dimer. Opt Express 24:4801–4811

  50. Shopa M, Kolwas K, Derkachova A, Derkachov G (2010) Dipole and quadrupole surface plasmon resonance contributions in formation of near-field images of a gold nanosphere, Opto−Electron. Rev 18:421–428

    Google Scholar 

  51. Sun Y, Xia Y (2002) Shape-controlled synthesis of gold and silver nanoparticles. Science 298:2176

    Article  Google Scholar 

  52. Tong L, Wei Q, Wei A, Cheng J-X (2009) Gold nanorods as contrast agents for biological imaging, optical properties, surface conjugation, and photothermal effects, Photochem. Photo-Dermatology 85(1):21

    Google Scholar 

  53. Toudert J, Babonneau D, Simonot L, Camelio S, Girardeau T (2008) Quantitative modelling of the surface plasmon resonances of metal nanoclusters sandwiched between dielectric layers, the influence of nanocluster size, shape and organization. Nanotechnology 19:125709

    Article  Google Scholar 

  54. Truong NP, Whittaker MR, Mak CW, Davis TP (2014) The importance of nanoparticle shape in cancer drug delivery. Exp Opin Drug Deliv 12(1):129–142

    Article  Google Scholar 

  55. Ung T, Liz-Marzan LM, Mulvaney P (2002) Gold nanoparticle thin films. Colloid Surface A 202:119–126

    Article  Google Scholar 

  56. Veith GM, Lupini AR, Sergey R, Stephen JP, David RM, Viviane S, Craig AB, Nancy JD (2009) Thermal stability and catalytic activity of gold nanoparticles supported on silica. J Catal 262:92–101

    Article  Google Scholar 

  57. Wang YQ, Liang WS, Geng CY (2010) Shape evolution of gold nanoparticles. J Nanopart Res 12:655–666

    Article  Google Scholar 

  58. Wei H, Coronado AR, Nordlander P, Aizpurua J, Xu H (2010) Multipolar. Plasmon Reson Individual Ag Nanorice ACS Nano 4(5):2649–2654

    Google Scholar 

  59. Xu J, Mills AP, Ueda A, Henderson DO, Suzuki R, Ishibashi S (1999) Vacancy clusters on surfaces of Au nanoparticles embedded in MgO. Phys Rev Lett 88:4586–4589

    Article  Google Scholar 

  60. Xu H, Aizpurua J, Käll M, Apell P (2000) Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering. Phys Rev E 62:4318–4324

    Article  Google Scholar 

  61. Yu SW, Liao HB, Wen WJ, Wong GKL (2005) Au/TiO2/SiO2 sandwich multilayer composite films with large nonlinear optical susceptibility. Opt Mater 27:1433–1437

    Article  Google Scholar 

  62. Zeng H, Jianrong Q, Zhenhuan Y, Congshan Z, Fuxi G (2004) Irradiation assisted fabrication of gold nanoparticles-doped glasses, J. Crystal Growth 267:156–160

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ranjit Laha.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Laha, R., Malar, P., Osipowicz, T. et al. Tailoring plasmonic properties of metal nanoparticle-embedded dielectric thin films: the sandwich method of preparation. J Nanopart Res 19, 302 (2017). https://doi.org/10.1007/s11051-017-3988-2

Download citation

Keywords

  • Tailoring
  • LSPR
  • Sandwich method
  • Gold nanoparticles
  • Nanocomposite
  • RBS
  • Plasmonic