Advertisement

Tailoring plasmonic properties of metal nanoparticle-embedded dielectric thin films: the sandwich method of preparation

  • Ranjit Laha
  • P. Malar
  • Thomas Osipowicz
  • S. Kasiviswanathan
Research Paper

Abstract

Tailoring of plasmonic properties of metal nanoparticle-embedded dielectric thin films are very crucial for many thin film-based applications. We, herein, investigate the various ways of tuning the plasmonic positions of gold nanoparticles (AuNPs)-embedded indium oxide thin films (Au:IO) through a sequence-specific sandwich method. The sandwich method is a four-step process involving deposition of In2O3 film by magnetron sputtering in first and fourth steps, thermal evaporation of Au on to In2O3 film in second and annealing of Au/In2O3 film in the third step. The Au:IO films were characterized by x-ray diffraction, spectrophotometry and transmission electron microscopy. The size and shape of the embedded nanoparticles were found from Rutherford back-scattering spectrometry. Based on dynamic Maxwell Garnett theory, the observed plasmon resonance position was ascribed to the oblate shape of AuNPs formed in sandwich method. Finally, through experimental data, it was shown that the plasmon resonance position of Au:IO thin films can be tuned by ~ 125 nm. The method shown here can be used to tune the plasmon resonance position over the entire range of visible region for the thin films made from other combinations of metal-dielectric pair.

Keywords

Tailoring LSPR Sandwich method Gold nanoparticles Nanocomposite RBS Plasmonic 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Addison CJ, Konorov SO, Brolo AG, Blades MW, Turner RFB (2009) Tuning gold nanoparticle self-assembly for optimum coherent anti-stokes Raman scattering and second harmonic generation response. J Phys Chem C 113:3586–3592CrossRefGoogle Scholar
  2. Barbosa S, Agrawal A, Lorenzo LR, Santos IP, Alvarez-Puebla RA, Kornowski A, Weller H, Liz-Marzan LM (2010) Tuning size and sensing properties in colloidal gold nanostars. Langmuir 26(18):14943–14950CrossRefGoogle Scholar
  3. Barin I (1989) Thermo chemical data of pure substances, vols. I and II. VCH, WeinheimGoogle Scholar
  4. Barradas NP (2007) Can quantum dots be analysed with macrobeam RBS? Nucl Instr Meth. B 261:435–438CrossRefGoogle Scholar
  5. Barradas NP, García Núñez C, Cubero AR, Shen G, Kung P, Pau JL (2016) Analytical simulation of RBS spectra of nanowire samples. Nucl Instr Meth B 371:116–120CrossRefGoogle Scholar
  6. Batra D, Seifert S, Varela LM, Liu ACY, Firestone MA (2007) Solvent-mediated plasmon tuning in a gold-nanoparticle–poly (ionic liquid) composite. Adv Funct Mater 17:1279–1287CrossRefGoogle Scholar
  7. Bond GC, Thompson DT (1999) Catalysis by gold. Catal Rev Sci Eng 41:319–388CrossRefGoogle Scholar
  8. Bora T, Zoepfl D, Dutta J (2016) Importance of plasmonic heating on visible light driven photocatalysis of gold nanoparticle decorated zinc oxide Nanorods. Sci Rep 6:26913CrossRefGoogle Scholar
  9. Bruno G, Giuseppe VB, Maria MG, Alberto S, Pio C, Maria L (2010) A two-step plasma processing for gold nanoparticles supported on silicon near-infrared plasmonics. Appl Phys Lett 96:043104–043106CrossRefGoogle Scholar
  10. Carretero-Palacios S, Calvo ME, Míguez H (2015) Absorption enhancement in organic−inorganic halide perovskite films with embedded plasmonic gold nanoparticles. J Phys Chem C 119:8635–18640CrossRefGoogle Scholar
  11. Clavero C (2014) Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices. Nature 8:95–103Google Scholar
  12. Doolittle LR (1985) Algorithms for the rapid simulation of Rutherford backscattering spectra. Nucl Instr Meth B 9:344–351CrossRefGoogle Scholar
  13. Fujisawa H, Yuko M, Masaru S (2006) Fabrication of self-assembled Au nanodots and their applications to ferroelectric nanocapacitors. Jpn J Appl Phys 45:7262–7264CrossRefGoogle Scholar
  14. Gans R (1912) Uber die form ultramikroskopischer goldteilchen. Ann Phys 37:881–887CrossRefGoogle Scholar
  15. Garcia-Serrano J, Pal U (2003) Synthesis and characterization of Au nanoparticles in Al2O3 matrix. Int J Hydrogen Energ 28:637–640CrossRefGoogle Scholar
  16. Ghosh P, Han G, De M, Kim CK, Rotello VM (2008) Gold nanoparticles in delivery applications. Adv Drug Deliver Rev 60:1307–1315CrossRefGoogle Scholar
  17. Giordano S (2003) Effective medium theory for dispersions of dielectric ellipsoids. J Electrost 58:59–76CrossRefGoogle Scholar
  18. Grand J, Adam PM, Grimault AS, Vial A, de la Chapelle ML, Bijeon JL, Kostcheev S, Royer P (2006) Optical extinction spectroscopy of oblate, Prolate and Ellipsoid Shaped Gold Nanoparticles, Experiments and Theory. Plasmonics 1:135–140CrossRefGoogle Scholar
  19. Hansen M, Anderko K (1958) Constitution of binary alloys. McGraw Hill, New YorkGoogle Scholar
  20. Heilmann A, Quinten M, Werner J (1998) Optical response of thin plasma-polymer films with non-spherical silver nanoparticles. Eur Phys J B 3:455–461CrossRefGoogle Scholar
  21. Hornyak GL, Patrissi CJ, Martin CR, Valmalette JC, Dutta J, Hofman H (1997) Dynamical Maxwell Garnett optical modeling of nanogold-porous alumina composites, Mie and kappa influence on absorption maxima. Nanostruct Mater 9:575–578CrossRefGoogle Scholar
  22. Hu M, Chen J, Zhi-Yuan L, Leslie A, Gregory VH, Xingde L, Manuel M, Younan X (2006) Gold nanostructures, engineering their plasmonic properties for biomedical applications. Chem Soc Rev 35:1084–1094CrossRefGoogle Scholar
  23. Ivanova S, Petit C, Pitchon V (2004) A new preparation method for the formation of gold nanoparticles on an oxide support. Appl Catal A: General 267:191CrossRefGoogle Scholar
  24. Jain PK, Xiaohua H, El-Sayed IH, El-Sayed MA (2007) Review of some interesting surface plasmon resonance-enhanced properties of noble metal nanoparticles and their applications to biosystems. Plasmonics 2:107–118CrossRefGoogle Scholar
  25. Johnson PB, Christy RW (1972) Optical constants of noble metals. Phys Rev B 6:4370–4379CrossRefGoogle Scholar
  26. Jonsson JN, Barka F, Castel X, Pisarek M, Bezzi Z, Boukherroub R, Szunerits S (2010) Development of new localized surface plasmon resonance interfaces based on gold nanostructures sandwiched between tin-doped indium oxide films. Langmuir 26:4266–4273CrossRefGoogle Scholar
  27. Kelly KL, Coronado E, Zhao LZ, Schatz GC (2003) The optical properties of metal nanoparticles, the influence of size, shape, and dielectric environment. J Phys Chem B 107:668–677CrossRefGoogle Scholar
  28. Kim JH, Baek KH, Kim CK, Kim YB, Yoon CS (2007) Formation of gold nanoparticles embedded in a polyimide film for nanofloating gate memory. Appl Phys Lett 90:123118CrossRefGoogle Scholar
  29. Kling A, Ortiz MI, Sangrador J, Rodrıguez A, Rodrıguez A, Ballesteros C, Soares JC (2006) Combined RBS and TEM characterization of nano-SiGe layers embedded in SiO2. Nucl Instr Meth B 249:451–453CrossRefGoogle Scholar
  30. Krpetic Z, Guerrini L, Larmour IA, Reglinski J, Faulds K, Graham D (2012) Importance of nanoparticle size in colorimetric and SERS-based multimodal trace detection of Ni(II) ions with functional gold nanoparticles. Small 8(5):707–714CrossRefGoogle Scholar
  31. Kyoung M, Lee M (2000) Z-scan studies on the third-order optical nonlinearity of Au nanoparticles embedded in TiO2. Bull Kor Chem Soc 21:26–28Google Scholar
  32. Liao HB, Xiao RF, Fu JS, Yu P, Wong GKL, Sheng P (1997) Large third-order optical nonlinearity in Au, SiO2 composite films near the percolation threshold. Appl Phys Lett 70:1–3CrossRefGoogle Scholar
  33. Liao HB, Xiao RF, Fu JS, Wang H, Wong KS, Wong GKL (1998) Origin of third-order optical nonlinearity in Au, SiO2 composite films on femtosecond and picosecond time scales. Opt Lett 23:388–390CrossRefGoogle Scholar
  34. Liao H, Lu W, Yu S, Wen W, Wong GKL (2005) Optical characteristics of gold nanoparticle-doped multilayer thin film. J Opt Soc Am B 22(9):1923–1926CrossRefGoogle Scholar
  35. Liao H, Wen W, Wong GKL (2006) Photoluminescence from Au nanoparticles embedded in Au, oxide composite films. J Opt Soc Am B 23(12):2518–2521CrossRefGoogle Scholar
  36. Link S, El-Sayed MA (1999) Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles. J Phys Chem B 103:4212–4217CrossRefGoogle Scholar
  37. Liz-Marzan LM (2006) Tailoring surface plasmons through the morphology and assembly of metal nanoparticles. Langmuir 22:32–41CrossRefGoogle Scholar
  38. Ma G, Sun W, Tang SH, Zhang H, Shen Z (2002) Size and dielectric dependence of the third-order nonlinear optical response of Au nanocrystals embedded in matrices. Opt Lett 27:1043–1045CrossRefGoogle Scholar
  39. Mangelinck D, Lee PS, Osipowitcz T, Pey KL (2004) Analysis of laterally non-uniform layers and sub-micron devices by Rutherford backscattering spectrometry. Nucl Instr B 215:495–501CrossRefGoogle Scholar
  40. Maxwell Garnett JC (1904) Colours in metal glasses and in metallic films. Philos Trans R Soc 203:385–420CrossRefGoogle Scholar
  41. Mie G (1908) Contributions on the optics of turbid media, particularly colloidal metal solutions. Ann Phys 25:377–445CrossRefGoogle Scholar
  42. Miller MM, Lazarides AA (2005) Sensitivity of metal nanoparticle surface plasmon resonance to the dielectric environment. J Phys Chem B 109:21556–21565CrossRefGoogle Scholar
  43. Mohapatra S, Mishra YK, Avasthi DK, Kabiraj D, Ghatak J, Varma S (2007) Synthesis of Au nanoparticles in partially oxidized Si matrix by atom beam sputtering, J. Phys. D. Appl Phys 40:7063–7068Google Scholar
  44. Nikoobakht B, El-Sayed MA (2003) Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem Mater 15(10):1957–1962CrossRefGoogle Scholar
  45. Okumu J, Kohl D, Sprafke A, von Plessen G, Wuttig M (2010) Formation mechanism of noble metal nanoparticles in reactively sputtered TiO2 films. J Appl Phys 108:063529CrossRefGoogle Scholar
  46. Pollonia R, Scremina BF, Calvellia P, Cattaruzzaa E, Battaglina G, Matteib G (2003) Metal nanoparticles–silica composites, Z-scan determination of non-linear refractive index. J Non-Cryst Solids 322:300–305CrossRefGoogle Scholar
  47. Rasch MR, Sokolov KV, Korgel BA (2009) Limitations on the optical Tunability of small diameter gold Nanoshells. Langmuir 25(19):11777–11785CrossRefGoogle Scholar
  48. Ryasnyanskiy AI, Palpant B, Debrus S, Pal U, Stepanov AL (2007) Optical nonlinearities of Au nanoparticles embedded in a zinc oxide matrix. Opt Commun 273:538–543CrossRefGoogle Scholar
  49. Shen Z, Su L (2016) Plasmonic trapping and tuning of a gold nanoparticle dimer. Opt Express 24:4801–4811Google Scholar
  50. Shopa M, Kolwas K, Derkachova A, Derkachov G (2010) Dipole and quadrupole surface plasmon resonance contributions in formation of near-field images of a gold nanosphere, Opto−Electron. Rev 18:421–428Google Scholar
  51. Sun Y, Xia Y (2002) Shape-controlled synthesis of gold and silver nanoparticles. Science 298:2176CrossRefGoogle Scholar
  52. Tong L, Wei Q, Wei A, Cheng J-X (2009) Gold nanorods as contrast agents for biological imaging, optical properties, surface conjugation, and photothermal effects, Photochem. Photo-Dermatology 85(1):21Google Scholar
  53. Toudert J, Babonneau D, Simonot L, Camelio S, Girardeau T (2008) Quantitative modelling of the surface plasmon resonances of metal nanoclusters sandwiched between dielectric layers, the influence of nanocluster size, shape and organization. Nanotechnology 19:125709CrossRefGoogle Scholar
  54. Truong NP, Whittaker MR, Mak CW, Davis TP (2014) The importance of nanoparticle shape in cancer drug delivery. Exp Opin Drug Deliv 12(1):129–142CrossRefGoogle Scholar
  55. Ung T, Liz-Marzan LM, Mulvaney P (2002) Gold nanoparticle thin films. Colloid Surface A 202:119–126CrossRefGoogle Scholar
  56. Veith GM, Lupini AR, Sergey R, Stephen JP, David RM, Viviane S, Craig AB, Nancy JD (2009) Thermal stability and catalytic activity of gold nanoparticles supported on silica. J Catal 262:92–101CrossRefGoogle Scholar
  57. Wang YQ, Liang WS, Geng CY (2010) Shape evolution of gold nanoparticles. J Nanopart Res 12:655–666CrossRefGoogle Scholar
  58. Wei H, Coronado AR, Nordlander P, Aizpurua J, Xu H (2010) Multipolar. Plasmon Reson Individual Ag Nanorice ACS Nano 4(5):2649–2654Google Scholar
  59. Xu J, Mills AP, Ueda A, Henderson DO, Suzuki R, Ishibashi S (1999) Vacancy clusters on surfaces of Au nanoparticles embedded in MgO. Phys Rev Lett 88:4586–4589CrossRefGoogle Scholar
  60. Xu H, Aizpurua J, Käll M, Apell P (2000) Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering. Phys Rev E 62:4318–4324CrossRefGoogle Scholar
  61. Yu SW, Liao HB, Wen WJ, Wong GKL (2005) Au/TiO2/SiO2 sandwich multilayer composite films with large nonlinear optical susceptibility. Opt Mater 27:1433–1437CrossRefGoogle Scholar
  62. Zeng H, Jianrong Q, Zhenhuan Y, Congshan Z, Fuxi G (2004) Irradiation assisted fabrication of gold nanoparticles-doped glasses, J. Crystal Growth 267:156–160CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.Department of PhysicsIndian Institute of Technology PatnaPatnaIndia
  2. 2.Research Institute, Department of PhysicsSRM UniversityKattankulathurIndia
  3. 3.Centre for Ion Beam ApplicationsNational University of SingaporeSingaporeSingapore
  4. 4.Department of PhysicsIndian Institute of Technology MadrasChennaiIndia

Personalised recommendations