Skip to main content

Surfactant-assisted production of TbCu2 nanoparticles

Abstract

The production of surfactant-assisted metallic nanoparticles of TbCu2 has been achieved by the combination of high-energy ball milling in tungsten carbide containers and the use of oleic acid (C18H34O2) and heptane (C7H16). The alloys were first produced in bulk pellets by arc melting and subsequently milled for only 2 and 5 h in oleic acid (15 and 30% mass weight). The powders consist of an ensemble of nanoparticles with a TbCu2 lattice cell volume of ≈215 Å3, an average particle diameter between 9 and 12 nm and inhomogeneous lattice strain of 0.2–0.4%, as deduced from X-ray diffraction data. The nanometric sizes of the crystals with defined lattice planes are close to those obtained by transmission electron microscopy. Raman spectroscopy shows the existence of inelastic peaks between 1000 and 1650 cm−1, a characteristic of C18H34O2. The magnetisation shows a peak at the antiferromagnetic-paramagnetic transition with Néel temperatures around 48 K (below that of bulk alloy) and a distinctive metamagnetic transition at 5 K up to 40 K. The Curie-Weiss behaviour above the transition reveals effective Bohr magneton numbers (≈9.1–9.9 μB) which are close to what is expected for the free Tb3+ ion using Hund’s rules. The metamagnetic transition is slightly augmented with respect to the bulk value, reaching H = 24.5 kOe by the combined effect of the size reduction and the lattice strain increase and the increase of magnetic disorder. At low temperatures, there is irreversibility as a result of the existing magnetic disorder. The moment relaxation follows an Arrhenius model with uncompensated Tb moments, with activation energies between 295 and 326 K and pre-exponential factors between 10−11 and 10−13 s. The results are interpreted as a consequence of the existence of a diamagnetic surfactant which drastically decreases the magnetic coupling between interparticle moments.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Akdogan NG, Hadjipanayis GC, Sellmyer DJ (2009) J Appl Phys 105:07A710

    Article  Google Scholar 

  2. Alba Venero D, Fernández Barquín L, Alonso J, Fdez-Gubieda ML, Rodríguez Fernández L, Boada R, Chaboy J (2013) J Phys Condens Matter 25:276001

    Article  Google Scholar 

  3. Andersson MS, Mathieu R, Su Seong L, Normile PS, Singh G, Nordblad P, De Toro JA (2015) Nanotechnology 26:475703

    Article  Google Scholar 

  4. Bedanta S, Kleemann W (2009) J Phys D Appl Phys 42:013001

    Article  Google Scholar 

  5. Berry CC, Curtis ASG (2003) J Phys D Appl Phys 36:R198

    Article  Google Scholar 

  6. Chandra S, Khurshid H, Li W, Hadjipanayis GC, Phan MH, Srikanth H (2012) Phys Rev B 86:014426

    Article  Google Scholar 

  7. Coey J M D (2010) Magnetism and magnetic materials (Cambridge University press)

  8. Cuellar FA, Liu YH, Salafranca J, Nemes N, Iborra E, Sanchez-Santolino G, Varela M, Garcia Hernandez M, Freeland JW, Zhernenkov M, Fitzsimmons MR, Okamoto S, Pennycook SJ, Bibes M, Barthélémy A, te Velthuis SGE, Sefrioui Z, Leon C, Santamaria J (2014) Nat Commun 5:52153

    Article  Google Scholar 

  9. De Gelder J, De Gussem K, Vandenabeele P, Moens L (2007) J Raman Spectrosc 38:1133

    Article  Google Scholar 

  10. De Paula VG, da Silva LM, dos Santos AO, Lang R, Otubo L, Coelho AA, Cardoso LP (2016) Phys Rev B 93:094427

    Article  Google Scholar 

  11. Dormann JL, Bessais L, Fiorani D (1988) J Phys C Solid State Phys 21:2015

    Article  Google Scholar 

  12. Echevarria-Bonet C, Rojas DP, Espeso JI, Rodríguez Fernández J, Rodríguez Fernández J, Gorria P, Blanco JA, Fdez-Gubieda ML, Bauer E, André G, Fernández Barquín L (2013) Phys Rev B 87:180407(R)

    Article  Google Scholar 

  13. Echevarria-Bonet C, Rojas DP, Espeso JI, Rodríguez Fernández J, de la Fuente RM, Fernández Barquín L, Rodríguez Fernández L, Gorria P, Blanco JA, Fdez-Gubieda ML, Bauer E, Damay F (2015) J Phys Condens Matter 27:496002

    Article  Google Scholar 

  14. Estrader M, López-Ortega A, Estradé S, Golosovsky IV, Salazar-Alvarez G, Vasilakaki M, Trohidou KN, Varela M, Stanley DC, Pechan MJ, Keavney DJ, Peiró F, Surinach S, Baró MD, Nogués J (2013) Nat Commun 4:2960

    Article  Google Scholar 

  15. Gleiter H, Schimmel T, Hahn H (2014) Nano Today 9:17–68

    Article  Google Scholar 

  16. Hansen MF, Koch CB, Mørup S (2000) Phys Rev B 62:1124

    Article  Google Scholar 

  17. Kilcoyne SH, Cywinski R (1995) J Magn Magn Mater 1466:140–144

    Google Scholar 

  18. Li WF, Hu XC, Cui BZ, Yang JB, Han JZ, Hadjipanayis GC (2013) J Magn Magn Mater 339:71

    Article  Google Scholar 

  19. Lu AH, Salabas EL, Schuth F (2007) Angew Chem Int Edn Engl 46:1222

    Article  Google Scholar 

  20. Luong N H and Franse J (1995) Handbook of magnetic materials: magnetic properties of rare Earth-Cu2 compounds. In: Buschow K H J (ed) vol 8. Elsevier, Amsterdam, p 415

  21. Makhlouf Salah A, Parker FT, Berkowitz AE (1997) Phys Rev B 55:R14717

    Article  Google Scholar 

  22. Morales MA, Williams DS, Shand PM, Stark C, Pekarek TM, Yue LP, Petkov V, Leslie-Pelecky DL (2004) Phys Rev B 70:184407

    Article  Google Scholar 

  23. Moriarty P (2001) Rep Prog Phys 64:297

    Article  Google Scholar 

  24. Mørup S, Madsen MB, Franck J, Villadsen J, Koch CJW (1983) J Magn Magn Mater 40:163

    Article  Google Scholar 

  25. Mørup S, Hansen MF, Frandsen C (2011) Comprehensive nanoscience and Nanotechnology, vol 1. Academic, Oxford, p 437

    Google Scholar 

  26. Nogués J, Sort J, Langlais V, Skumryev V, Suriñach S, Muñoz JS, Baró MD (2005) Phys Rep 422:65

    Article  Google Scholar 

  27. Peddis D, Rinaldi D, Ennas G, Scano A, Agostinelli E, Fiorani D (2012) Phys Chem Chem Phys 14:3162

    Article  Google Scholar 

  28. Rinaldi-Montes N, Gorria P, Martínez-Blanco D, Fuertes AB, Fernández Barquín L, Puente-Orench I, Blanco JA (2015) Nanotechnology 26:305705

    Article  Google Scholar 

  29. Rodríguez-Carvajal J (1993) Physica B 192:55

    Article  Google Scholar 

  30. Rojas DP, Fernández Barquín L, Rodríguez Fernández J, Espeso JI, Gómez Sal JC (2007) J Phys Condens Matter 19:186214

    Article  Google Scholar 

  31. Rojas DP, Fernández Barquín L, Echevarria-Bonet C, Rodríguez Fernández J (2012) J Nanosci Nanotechnol 12:7482

    Article  Google Scholar 

  32. Sánchez-Valdés CF, Ibarra-Gaytán PJ, Sánchez Llamazares JL, Ávalos-Borja M, Álvarez-Alonso P, Gorria P, Blanco JA (2014) Appl Phys Lett 104:212401

    Article  Google Scholar 

  33. Schneider CA, Rasband WS, Eliceiri KW (2012) Nat Methods 9:671

    Article  Google Scholar 

  34. Simeonidis K, Sarafidis C, Papastergiadis E, Angelakeris M, Tsiaoussis I, Kalogirou O (2011) Intermetallics 19:589

    Article  Google Scholar 

  35. Stark WJ, Stoessel PR, Wohlleben W, Hafner A (2015) Chem Soc Rev 44:5793–5805

    Article  Google Scholar 

  36. Tartaj P, Morales MD, Veintemillas-Verdaguer S, Gonzalez-Carreno T, Serna CJ (2003) J Phys D Appl Phys 36(13):R182

    Article  Google Scholar 

  37. Ullah M, Eaqub AM, Hamid SBA (2014) Rev Adv Mater Sci 37:1

    Google Scholar 

  38. Wang Y, Li Y, Rong C, Liu JP (2007) Nanotechnology 18:465701

    Article  Google Scholar 

  39. Yadav TP, Yadav RM, Singh DP (2012) Nanosci Nanotechnol 2:22

    Article  Google Scholar 

  40. Zhou GF, Bakker H (1995) Phys Rev B 52:9437

    Article  Google Scholar 

  41. Zysler RD, Fiorani D, Testa AM, Suber L, Agostinelli E, Godinho M (2003) Phys Rev B 68 (21):212408

Download references

Acknowledgments

This work has been supported by Spanish MINECO grant MAT2014-55049-C2-R. M. de la Fuente Rodríguez work is also supported by FPI (BES-2012-058722).

Compliance with ethical standards

The authors declare that they have no conflict of interest.

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. de la Fuente Rodríguez.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

de la Fuente Rodríguez, M., Espeso, J.I., González, J.A. et al. Surfactant-assisted production of TbCu2 nanoparticles. J Nanopart Res 19, 231 (2017). https://doi.org/10.1007/s11051-017-3931-6

Download citation

Keywords

  • Rare Earth binary nanoparticles
  • Surfactant-assisted production
  • Superantiferromagnetism
  • Arrhenius relaxation
  • Synthesis