Crystallite-size dependency of the pressure and temperature response in nanoparticles of magnesia

  • Philip P. Rodenbough
  • Siu-Wai ChanEmail author
Research Paper


We have carefully measured the hydrostatic compressibility and thermal expansion for a series of magnesia nanoparticles. We found a strong variance in these mechanical properties as crystallite size changed. For decreasing crystallite sizes, bulk modulus first increased, then reached a modest maximum of 165 GPa at an intermediate crystallite size of 14 nm, and then decreased thereafter to 77 GPa at 9 nm. Thermal expansion, meanwhile, decreased continuously to 70% of bulk value at 9 nm. These results are consistent to nano-ceria and together provide important insights into the thermal-mechanical structural properties of oxide nanoparticles.


Magnesia Bulk modulus Size-dependent Compressibility Thermal expansion Nanoparticle Lattice parameter 


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Abril RJ, Eloirdi R, Bouëxière D, Malmbeck R, Spino J (2011) In situ high temperature X-ray diffraction study of UO2 nanoparticles. J Mater Sci 46(22):7247–7252CrossRefGoogle Scholar
  2. Angel RJ, Alvaro M, Gonzalez-Platas J (2014) EosFit7c and a Fortran module (library) for equation of state calculations. Zeitschrift für Krist—Cryst Mater. 229(5)Google Scholar
  3. Bian K, Bassett W, Wang Z, Hanrath T (2014) The strongest particle: size-dependent elastic strength and Debye temperature of PbS nanocrystals. J Phys Chem Lett 5(21):3688–3693CrossRefGoogle Scholar
  4. Birch F (1947) Finite elastic strain of cubic crystals. Phys Rev 71(11):809–824CrossRefGoogle Scholar
  5. Chen B, Zhang H, Dunphy-Guzman KA, Spagnoli D, Kruger MB, Muthu DVS, Kunz M, Fakra S, Hu JZ, Guo QZ et al (2009) Size-dependent elasticity of nanocrystalline titania. Phys Rev B 79(12):125406CrossRefGoogle Scholar
  6. Clark SM, Prilliman SG, Erdonmez CK, Alivisatos AP (2005) Size dependence of the pressure-induced γ to α structural phase transition in iron oxide nanocrystals. Nanotechnology 16(12):2813–2818CrossRefGoogle Scholar
  7. Diehm PM, Ágoston P, Albe K (2012) Size-dependent lattice expansion in nanoparticles: reality or anomaly? Chem Phys Chem 13(10):2443–2454CrossRefGoogle Scholar
  8. Marquardt H, Speziale S, Marquardt K, Reichmann HJ, Konôpková Z, Morgenroth W, Liermann HP (2011) The effect of crystallite size and stress condition on the equation of state of nanocrystalline MgO. J Appl Phys 110(11)Google Scholar
  9. Murnaghan FD (1944) The compressibility of media under extreme pressures. Proc Natl Acad Sci 30(9):244–247CrossRefGoogle Scholar
  10. Pandya TC, Shaikh AI, Bhatt AD, Garg AB, Mittal R, Mukhopadhyay R (2011) Particle-size effect on the compressibility of nanocrystalline germanium. AIP Conference Proceedings 1349:413–414CrossRefGoogle Scholar
  11. Refson K, Wogelius RA, Fraser DG, Payne MC, Lee MH, Milman V (1995) Water chemisorption and reconstruction of the MgO surface. Phys Rev B 52(15):10823–10826CrossRefGoogle Scholar
  12. Rodenbough PP (2016) Crystallite size dependency of the pressure and temperature response in nanoparticles of ceria and other oxides. Columbia University, PhD dissertationGoogle Scholar
  13. Rodenbough PP, Song J, Walker D, Clark SM, Kalkan B, Chan S-W (2015) Size dependent compressibility of nano-ceria: minimum near 33 nm. Appl Phys Lett 106(16):163101CrossRefGoogle Scholar
  14. Rodenbough PP, Zheng C, Liu Y, Hui C, Xia Y, Ran Z, Hu Y, Chan S-W (2016) Lattice expansion in metal oxide nanoparticles: MgO, Co3O4, and Fe3O4. J Am Ceram SocGoogle Scholar
  15. Rodenbough PP, Lipatov M, Chan S-W (2017) Crystallite size dependency of thermal expansion in ceria nanoparticles. Mater Chem Phys 192:311–316CrossRefGoogle Scholar
  16. Siegel RW (1996) Creating nanophase materials. Sci Am 275(6):74–79CrossRefGoogle Scholar
  17. Wang Q, He D, Peng F, Xiong L, Wang J, Wang P, Xu C, Liu J (2014) Compression behavior of nanocrystalline TiN. Solid State Commun 182:26–29CrossRefGoogle Scholar
  18. Zhang F, Wang P, Koberstein J, Khalid S, Chan S-W (2004) Cerium oxidation state in ceria nanoparticles studied with X-ray photoelectron spectroscopy and absorption near edge spectroscopy. Surf Sci 563(1–3):74–82CrossRefGoogle Scholar
  19. Zvoriste-Walters, C. E.; Heathman, S.; Jovani-Abril, R.; Spino, J. L.; Janssen, A.; Caciuffo, R. Crystal size effect on the compressibility of nano-crystalline uranium dioxide. J Nucl Mater 2013, 435 (1–3), 123–127.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.Work carried out at the Chemistry Department and Applied Physics Applied Math Department of Columbia UniversityNew YorkUSA
  2. 2.New York University Abu DhabiAbu DhabiUnited Arab Emirates
  3. 3.Applied Physics Applied Math Department of Columbia UniversityNew YorkUSA

Personalised recommendations