Skip to main content
Log in

Effects of pore topology and iron oxide core on doxorubicin loading and release from mesoporous silica nanoparticles

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Mesoporous silica nanoparticles (MSNs) have a network of pores that give rise to extremely high specific surface areas, making them attractive materials for applications such as adsorption and drug delivery. The pore topology can be readily tuned to achieve a variety of structures such as the hexagonally ordered Mobil Crystalline Material 41 (MCM-41) and the disordered “wormhole” (WO) mesoporous silica (MS) structure. In this work, the effects of pore topology and iron oxide core on doxorubicin loading and release were investigated using MSNs with pore diameters of approximately 3 nm and sub-100 nm particle diameters. The nanoparticles were loaded with doxorubicin, and the drug release into phosphate-buffered saline (PBS, 10 mM, pH 7.4) at 37 °C was monitored by fluorescence spectroscopy. The release profiles were fit using the Peppas model. The results indicated diffusion-controlled release for all samples. Statistically significant differences were observed in the kinetic host–guest parameters for each sample due to the different pore topologies and the inclusion of an iron oxide core. Applying a static magnetic field to the iron oxide core WO-MS shell materials did not have a significant impact on the doxorubicin release. This is the first time that the effects of pore topology and iron oxide core have been isolated from pore diameter and particle size for these materials.

Comparison of the release of doxorubicin from WO and iron oxide@WO particles into PBS

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Andersson J, Rosenholm J, Areva S, Linden M (2004) Influences of material characteristics on ibuprofen drug loading and release profiles from ordered micro- and mesoporous silica matrices. Chem Mater 16(21):4160–4167. doi:10.1021/cm0401490

    Article  Google Scholar 

  • Baeza A, Guisasola E, Ruiz-Hernandez E, Vallet-Regi M (2012) Magnetically triggered multidrug release by hybrid mesoporous silica nanoparticles. Chem Mater 24(3):517–524. doi:10.1021/cm203000u

    Article  Google Scholar 

  • Baeza A, Colilla M, Vallet-Regi M (2015) Advances in mesoporous silica nanoparticles for targeted stimuli-responsive drug delivery. Expert Opin Drug Deliv 12(2):319–337. doi:10.1517/17425247.2014.953051

    Article  Google Scholar 

  • Bhattacharya S, Ganivada MN, Dinda H, Sarma JD, Shunmugam R (2016) Biodegradable copolymer for stimuli-responsive sustained release of doxorubicin. Acs Omega 1(1):108–117. doi:10.1021/acsomega.6b00018

    Article  Google Scholar 

  • Bouchoucha M, Cote MF, C-Gaudreault R, Fortin MA, Kleitz F (2016) Size-controlled functionalized mesoporous silica nanoparticles for tunable drug release and enhanced anti-tumoral activity. Chem Mater 28(12):4243–4258. doi:10.1021/acs.chemmater.6b00877

    Article  Google Scholar 

  • Chen WH et al (2016) Rational design of multifunctional magnetic mesoporous silica nanoparticle for tumor-targeted magnetic resonance imaging and precise therapy. Biomaterials 76:87–101. doi:10.1016/j.biomaterials.2015.10.053

    Article  Google Scholar 

  • Climent E, Bernardos A, Martinez-Manez R, Maquieira A, Marcos MD, Pastor-Navarro N, Puchades R, Sancenon F, Soto J, Amoros P (2009) Controlled delivery systems using antibody-capped mesoporous nanocontainers. J Am Chem Soc 131(39):14075–14080. doi:10.1021/ja904456d

    Article  Google Scholar 

  • Costa P, Manuel J, Lobo S (2001) Modeling and comparison of dissolution profiles. Eur J Pharm Sci 13(2):123–133. doi:10.1016/s0928-0987(01)00095-1

    Article  Google Scholar 

  • Daryasari MP, Akhgar MR, Mamashli F, Bigdeli B, Khoobi M (2016) Chitosan-folate coated mesoporous silica nanoparticles as a smart and pH-sensitive system for curcumin delivery. RSC Adv 6(107):105578–105588. doi:10.1039/c6ra23182a

    Article  Google Scholar 

  • Deng Y, Qi D, Deng C, Zhang X, Zhao D (2008) Superparamagnetic high-magnetization microspheres with an Fe3O4@SiO2 core and perpendicularly aligned mesoporous SiO2 shell for removal of microcystins. J Am Chem Soc 130(1):28–29. doi:10.1021/ja0777584

    Article  Google Scholar 

  • Egodawatte S, Datt A, Burns EA, Larsen SC (2015) Chemical insight into the adsorption of chromium(III) on iron oxide/mesoporous silica nanocomposites. Langmuir 31(27):7553–7562. doi:10.1021/acs.langmuir.5b01483

    Article  Google Scholar 

  • Fossati R, Confalonieri C, Torri V, Ghislandi E, Penna A, Pistotti V, Tinazzi A, Liberati A (1998) Cytotoxic and hormonal treatment for metastatic breast cancer: a systematic review of published randomized trials involving 31,510 women. J Clin Oncol 16(10):3439–3460

    Article  Google Scholar 

  • Gan Q, Dai DW, Yuan Y, Qian JC, Sha S, Shi JL, Liu CS (2012) Effect of size on the cellular endocytosis and controlled release of mesoporous silica nanoparticles for intracellular delivery. Biomed Microdevices 14(2):259–270. doi:10.1007/s10544-011-9604-9

    Article  Google Scholar 

  • Gao Y, Chen Y, Ji XF, He XY, Yin Q, Zhang ZW, Shi JL, Li YP (2011) Controlled intracellular release of doxorubicin in multidrug-resistant cancer cells by tuning the shell-pore sizes of mesoporous silica nanoparticles. ACS Nano 5(12):9788–9798. doi:10.1021/nn2033105

    Article  Google Scholar 

  • Gao L, Sun JH, Zhang L, Wang JP, Ren B (2012) Influence of different structured channels of mesoporous silicate on the controlled ibuprofen delivery. Mater Chem Phys 135(2–3):786–797. doi:10.1016/j.matchemphys.2012.05.059

    Article  Google Scholar 

  • Guo R, Li LL, Yang H, Zhang MJ, Fang CJ, Zhang TL, Zhang YB, Cui GH, Peng SQ, Feng W, Yan CH (2012) Tuning kinetics of controlled-release in disulfide-linked MSN-folate conjugates with different fabrication procedures. Mater Lett 66(1):79–82. doi:10.1016/j.matlet.2011.08.046

    Article  Google Scholar 

  • Horcajada P, Ramila A, Perez-Pariente J, Vallet-Regi M (2004) Influence of pore size of MCM-41 matrices on drug delivery rate. Microporous Mesoporous Mater 68(1–3):105–109. doi:10.1016/j.micromeso.2003.12.012

    Article  Google Scholar 

  • Ishii H, Ikuno T, Shimojima A, Okubo T (2015) Preparation of core-shell mesoporous silica nanoparticles with bimodal pore structures by regrowth method. J Colloid Interface Sci 448:57–64. doi:10.1016/j.jcis.2015.01.057

    Article  Google Scholar 

  • Izquierdo-Barba I, Martinez A, Doadrio AL, Perez-Pariente J, Vallet-Regi M (2005) Release evaluation of drugs from ordered three-dimensional silica structures. Eur J Pharm Sci 26(5):365–373. doi:10.1016/j.ejps.2005.06.009

    Article  Google Scholar 

  • Izquierdo-Barba I, Sousa E, Doadrio JC, Doadrio AL, Pariente JP, Martinez A, Babonneau F, Vallet-Regi M (2009) Influence of mesoporous structure type on the controlled delivery of drugs: release of ibuprofen from MCM-48, SBA-15 and functionalized SBA-15. J Sol-Gel Sci Technol 50(3):421–429. doi:10.1007/s10971-009-1932-3

    Article  Google Scholar 

  • Kaushik D, Bansal G (2015) Four new degradation products of doxorubicin: an application of forced degradation study and hyphenated chromatographic techniques. J Pharm Anal 5:285–295. doi:10.1016/j.jpha.215.05.003

    Article  Google Scholar 

  • Knezevic NZ, Lin VS-Y (2013) A magnetic mesoporous silica nanoparticle-based drug delivery system for photosensitive cooperative treatment of cancer with a mesopore-capping agent and mesopore-loaded drug. Nano 5(4):1544–1551. doi:10.1039/c2nr33417h

    Google Scholar 

  • Knezevic NZ, Slowing II, Lin VS-Y (2012) Tuning the release of Anticancer drugs from magnetic iron oxide/mesoporous silica core/shell nanoparticles. ChemPlusChem 77(1):48–55. doi:10.1002/cplu.201100026

    Article  Google Scholar 

  • Korsmeyer RW, Peppas NA (1981) Effect of the morphology of hydrophilic polymeric matrices on the diffusion and release of water-soluble drugs. J Membr Sci 9(3):211–227. doi:10.1016/s0376-7388(00)80265-3

    Article  Google Scholar 

  • Lai CY, Trewyn BG, Jeftinija DM, Jeftinija K, Xu S, Jeftinija S, Lin VS-Y (2003) A mesoporous silica nanosphere-based carrier system with chemically removable CdS nanoparticle caps for stimuli-responsive controlled release of neurotransmitters and drug molecules. J Am Chem Soc 125(15):4451–4459. doi:10.1021/ja028650l

    Article  Google Scholar 

  • Li ZX, Barnes JC, Bosoy A, Stoddart JF, Zink JI (2012) Mesoporous silica nanoparticles in biomedical applications. Chem Soc Rev 41(7):2590–2605. doi:10.1039/c1cs15246g

    Article  Google Scholar 

  • Limnell T, Santos HA, Makila E, Heikkila T, Salonen J, Murzin DY, Kumar N, Laaksonen T, Peltonen L, Hirvonen J (2011) Delivery formulations of ordered and nonordered mesoporous silica: comparison of three drug loading methods. J Pharm Sci 100(8):3294–3306. doi:10.1002/jps.22577

    Article  Google Scholar 

  • Lu F, Wu SH, Hung Y, Mou CY (2009) Size effect on cell uptake in well-suspended, uniform mesoporous silica nanoparticles. Small 5(12):1408–1413. doi:10.1002/smll.200900005

    Article  Google Scholar 

  • Manzano M, Aina V, Arean CO, Balas F, Cauda V, Colilla M, Delgado MR, Vallet-Regi M (2008) Studies on MCM-41 mesoporous silica for drug delivery: effect of particle morphology and amine functionalization. Chem Eng J 137(1):30–37. doi:10.1016/j.cej.2007.07.078

    Article  Google Scholar 

  • Meng HA, Liong M, Xia TA, Li ZX, Ji ZX, Zink JI, Nel AE (2010) Engineered design of mesoporous silica nanoparticles to deliver doxorubicin and P-glycoprotein siRNA to overcome drug resistance in a cancer cell line. ACS Nano 4(8):4539–4550. doi:10.1021/nn100690m

    Article  Google Scholar 

  • Meng H, Xue M, Xia T, Ji ZX, Tarn DY, Zink JI, Nel AE (2011) Use of size and a copolymer design feature to improve the biodistribution and the enhanced permeability and retention effect of doxorubicin-loaded mesoporous silica nanoparticles in a murine xenograft tumor model. ACS Nano 5(5):4131–4144. doi:10.1021/nn200809t

    Article  Google Scholar 

  • Mishra AK, Pandey H, Agarwal V, Ramteke PW, Pandey AC (2014) Nanoengineered mesoporous silica nanoparticles for smart delivery of doxorubicin. J Nanopart Res 16(8):10. doi:10.1007/s11051-014-2515-y

    Article  Google Scholar 

  • Mo JB, He LZ, Ma B, Chen TF (2016) Tailoring particle size of mesoporous silica nanosystem to antagonize glioblastoma and overcome blood-brain barrier. ACS Appl Mater Interfaces 8(11):6811–6825. doi:10.1021/acsami.5b11730

    Article  Google Scholar 

  • Moller K, Kobler J, Bein T (2007) Colloidal suspensions of nanometer-sized mesoporous silica. Adv Funct Mater 17(4):605–612. doi:10.1002/adfm.200600578

    Article  Google Scholar 

  • Mueller PS, Parker CP, Larsen SC (2015) One-pot synthesis of iron oxide mesoporous silica core/shell nanocomposites. Microporous Mesoporous Mater 204:173–179. doi:10.1016/j.micromeso.2014.11.009

    Article  Google Scholar 

  • Nyalosaso JL et al (2016) Synthesis, decoration, and cellular effects of magnetic mesoporous silica nanoparticles. RSC Adv 6(62):S7275–S7283. doi:10.1039/c6ra09017f

    Article  Google Scholar 

  • Oberdorster G, Oberdorster E, Oberdorster J (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113(7):823–839. doi:10.1289/ehp.7339

    Article  Google Scholar 

  • Patel K, Raj BS, Chen Y, Lou X (2016) Cytotoxicity of folic acid conjugated hollow silica nanoparticles toward Caco2 and 3T3 cells, with and without encapsulated DOX. Colloid Surf B-Biointerfaces 140:213–222. doi:10.1016/j.colsurfb.2015.12.046

    Article  Google Scholar 

  • Ritger PL, Peppas NA (1987) A simple equation for description of solute release I. Fickian and non-fickian release from non-swellable devices in the form of slabs, spheres, cylinders or discs. J Control Release 5(1):23–36. doi:10.1016/0168-3659(87)90034-4

    Article  Google Scholar 

  • Rosenholm JM, Peuhu E, Bate-Eya LT, Eriksson JE, Sahlgren C, Linden M (2010) Cancer-cell-specific induction of apoptosis using mesoporous silica nanoparticles as drug-delivery vectors. Small 6(11):1234–1241. doi:10.1002/smll.200902355

    Article  Google Scholar 

  • Slowing II, Vivero-Escoto JL, Wu CW, Lin VS-Y (2008) Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. Adv Drug Deliv rev 60(11):1278–1288. doi:10.1016/j.addr.2008.03.012

    Article  Google Scholar 

  • Souto GD, Farhane Z, Casey A, Efeoglu E, McIntyre J, Byrne HJ (2016) Evaluation of cytotoxicity profile and intracellular localisation of doxorubicin-loaded chitosan nanoparticles. Anal Bioanal Chem 408(20):5443–5455. doi:10.1007/s00216-016-9641-6

    Article  Google Scholar 

  • Souza KC, Ardisson JD, Sousa EMB (2009) Study of mesoporous silica/magnetite systems in drug controlled release. J Mater Sci-Mater Med 20(2):507–512. doi:10.1007/s10856-008-3592-1

    Article  Google Scholar 

  • Tao CL, Zhu YF (2014) Magnetic mesoporous silica nanoparticles for potential delivery of chemotherapeutic drugs and hyperthermia. Dalton Trans 43(41):15482–15490. doi:10.1039/c4dt01984a

    Article  Google Scholar 

  • Vallet-Regi M, Ramila A, del Real RP, Perez-Pariente J (2001) A new property of MCM-41: drug delivery system. Chem Mater 13:308–331. doi:10.1021/cm0011559

    Article  Google Scholar 

  • Wyss PP, Herrera LC, Bouteghmes NS, Sarem M, Reichardt W, Leupold J, Hennig J, Shastri VP (2016) Nanoprobes for multimodal visualization of bone mineral phase in magnetic resonance and near-infrared optical imaging. Acs Omega 1(2):182–192. doi:10.1021/acsomega.6b00088

    Article  Google Scholar 

  • Xu J, Zhang BC, Li XL, Xu WH, Zhou J, Shen L, Wei QC (2016) Chemosensitization and radiosensitization of a lung cancer cell line A549 induced by a composite polymer micelle. Discov Med 22(119):7–17

    Google Scholar 

  • Yang Y, Guo QF, Peng JR, Su J, Lu XL, Zhao YX, Qian ZY (2016) Doxorubicin-conjugated heparin-coated superparamagnetic iron oxide nanoparticles for combined anticancer drug delivery and magnetic resonance imaging. J Biomed Nanotechnol 12(11):1963–1974. doi:10.1166/jbn.2016.2298

    Article  Google Scholar 

  • Zhu YF, Shi JL, Li YS, Chen HR, Shen WH, Dong XP (2005) Hollow mesoporous spheres with cubic pore network as a potential carrier for drug storage and its in vitro release kinetics. J Mater Res 20(1):54–61. doi:10.1557/jmr.2005.0035

    Article  Google Scholar 

  • Zhu YF, Fang Y, Kaskel S (2010) Folate-conjugated Fe3O4@SiO2 hollow mesoporous spheres for targeted anticancer drug delivery. J Phys Chem C 114(39):16382–16388. doi:10.1021/jp106685q

    Article  Google Scholar 

  • Zhu J, Liao L, Zhu LN, Zhang P, Guo K, Kong JL, Ji C, Liu BH (2013) Size-dependent cellular uptake efficiency, mechanism, and cytotoxicity of silica nanoparticles toward HeLa cells. Talanta 107:408–415. doi:10.1016/j.talanta.2013.01.037

    Article  Google Scholar 

Download references

Acknowledgements

Paul Mueller is acknowledged for assistance with the synthesis of materials. John Baer was supported through the National Institute of General Medical Sciences of the National Institutes of Health under Award Number R25GM058939, the University of Iowa (UI) Office of the Vice President for Research and the UI Chief Diversity Office.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah C. Larsen.

Ethics declarations

Funding

This work was partially supported by the National Science Foundation (NSF-CHE-1538847).

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(PDF 575 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ronhovde, C.J., Baer, J. & Larsen, S.C. Effects of pore topology and iron oxide core on doxorubicin loading and release from mesoporous silica nanoparticles. J Nanopart Res 19, 215 (2017). https://doi.org/10.1007/s11051-017-3908-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-017-3908-5

Keywords

Navigation