Skip to main content

Advertisement

Log in

Synthesis of 3D flower-like cobalt sulfide hierachitecture for high-performance electrochemical energy storage

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

In this work, rationally designed 3D cobalt sulfide nanoflowers (3D CoS NF) were prepared by a facile one-step solvothermal method. The 3D CoS NFs were assembled from low dimensional building blocks with thin 2D nanoflakes with an average thickness of 19 nm (between 1 and 100 nm). SEM and TEM images revealed that the flower-like hierarchitecture consisted with an average diameter of 12 μm. XRD data indicated that the as-prepared sample had a pure hexagonal CoS crystal structure. Such 3D CoS NF was applied for fast-charge storage device which delivered a specific capacity of 669 C g−1 at a current density of 1 A g−1. By assembling the 3D CoS NF into an asymmetric supercapacitor (ASC), the device showed 129.0 C g−1 capacity and long cycle stability (85.7% retention after 3000 cycles).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bao S-J, Li CM, Guo C-X, Qiao Y (2008) Biomolecule-assisted synthesis of cobalt sulfide nanowires for application in supercapacitors. J Power Sources 180:676–681. doi:10.1016/j.jpowsour.2008.01.085

    Article  Google Scholar 

  • Chen MH, Zhang JW, Xia XH, Qi ML, Yin JH, Chen QG (2016) Construction of cobalt sulfide/nickel core-branch arrays and their application as advanced electrodes for electrochemical energy storage. Electrochim Acta 195:184–191. doi:10.1016/j.electacta.2016.02.143

    Article  Google Scholar 

  • Dong W et al (2011) Hydrothermal synthesis and structure evolution of hierarchical cobalt sulfide nanostructures. Dalton Trans 40:243–248

    Article  Google Scholar 

  • Dunn B, Kamath H, Tarascon J-M (2011) Electrical energy storage for the grid: a battery of choices. Science 334:928

    Article  Google Scholar 

  • Gu Y (2013) Graphene-wrapped CoS nanoparticles for high-capacity lithium-ion storage. ACS Appl Mater Interfaces 5:801

    Article  Google Scholar 

  • He D, Wu D, Gao J, Wu X, Zeng X, Ding W (2015) Flower-like CoS with nanostructures as a new cathode-active material for rechargeable magnesium batteries. J Power Sources 294:643–649. doi:10.1016/j.jpowsour.2015.06.127

    Article  Google Scholar 

  • Hu QR, Wang SL, Zhang Y, Tang WH (2010) Synthesis of cobalt sulfide nanostructures by a facile solvothermal growth process. J Alloys Compd 491:707–711

    Article  Google Scholar 

  • Kötz R, Carlen M (2000) Principles and applications of electrochemical capacitors. Electrochim Acta 45:2483–2498. doi:10.1016/S0013-4686(00)00354-6

    Article  Google Scholar 

  • Li M, Xu S, Liu T, Wang F, Yang P, Wang L, Chu PK (2013) Electrochemically-deposited nanostructured Co(OH)2 flakes on three-dimensional ordered nickel/silicon microchannel plates for miniature supercapacitors. J Mater Chem a 1:532–540. doi:10.1039/C2TA00160H

    Article  Google Scholar 

  • Lin TW, Hsiao MC, Chou SW, Shen HH, Lin JY (2015) Glucose-assisted synthesis of nickel-cobalt sulfide/carbon nanotube composites as efficient cathode materials for hybrid supercapacitors. J Electrochem Soc 162:A1493–A1499. doi:10.1149/2.0511508jes

    Article  Google Scholar 

  • Liu S et al (2015) Facile synthesis of novel networked ultralong cobalt sulfide nanotubes and its application in supercapacitors. ACS Appl Mater Interfaces:7, 25568–25573

  • Luo F, Li J, Yuan H, Xiao D (2014a) Rapid synthesis of three-dimensional flower-like cobalt sulfide hierarchitectures by microwave assisted heating method for high-performance supercapacitors. Electrochim Acta 123:183–189. doi:10.1016/j.electacta.2014.01.009

    Article  Google Scholar 

  • Miller JR, Simon P (2008) Electrochemical capacitors for energy management. Science 321:651

    Article  Google Scholar 

  • Rakhi RB, Alhebshi NA, Anjum DH, Alshareef HN (2014) Nanostructured cobalt sulfide-on-fiber with tunable morphology as electrodes for asymmetric hybrid supercapacitors. J Mater Chem A 2:16190–16198. doi:10.1039/c4ta03341h

    Article  Google Scholar 

  • Shi J, Li X, He G, Zhang L, Li M (2015) Electrodeposition of high-capacitance 3D CoS/graphene nanosheets on nickel foam for high-performance aqueous asymmetric supercapacitors. J Mater Chem A 3:20619–20626. doi:10.1039/c5ta04464b

    Article  Google Scholar 

  • Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7:845–854

    Article  Google Scholar 

  • Tang YF et al (2015) A highly electronic conductive cobalt nickel sulphide dendrite/quasispherical nanocomposite for a supercapacitor electrode with ultrahigh areal specific capacitance. J Power Sources 295:314–322. doi:10.1016/j.jpowsour.2015.07.035

    Article  Google Scholar 

  • Tu CC, Lin LY, Xiao BC, Chen YS (2016) Highly efficient supercapacitor electrode with two-dimensional tungsten disulfide and reduced graphene oxide hybrid nanosheets. J Power Sources 320:78–85. doi:10.1016/j.jpowsour.2016.04.083

    Article  Google Scholar 

  • Wang H, Casalongue HS, Liang Y, Dai H (2010a) Ni(OH)2 nanoplates grown on graphene as advanced electrochemical pseudocapacitor materials. J Am Chem Soc 132:7472–7477. doi:10.1021/ja102267j

    Article  Google Scholar 

  • Wang MQ, Fei HF, Zhang P, Yin LW (2016) Hierarchically layered MoS2/Mn3O4 hybrid architectures for electrochemical supercapacitors with enhanced performance. Electrochim Acta 209:389–398. doi:10.1016/j.electacta.2016.05.078

    Article  Google Scholar 

  • Wang Q et al (2010b) Novel flower-like CoS hierarchitectures: one-pot synthesis and electrochemical properties. J Mater Chem 21:327–329

    Article  Google Scholar 

  • Wang Q et al (2011) Facile synthesis and superior supercapacitor performances of three-dimensional cobalt sulfide hierarchitectures. CrystEngComm 13:6960–6963

    Article  Google Scholar 

  • Wu M-S, Wang M-J, Jow J-J (2010) Fabrication of porous nickel oxide film with open macropores by electrophoresis and electrodeposition for electrochemical capacitors. J Power Sources 195:3950–3955. doi:10.1016/j.jpowsour.2009.12.136

    Article  Google Scholar 

  • Xia X-h, Tu J-p, Mai Y-j, Wang X-l, Gu C-d, Zhao X (2011) Self-supported hydrothermal synthesized hollow Co3O4 nanowire arrays with high supercapacitor capacitance. J Mater Chem 21:9319–9325. doi:10.1039/C1JM10946D

    Article  Google Scholar 

  • Yang X, Li C, Chen Y (2017a) Hierarchical porous carbon with ultrahigh surface area from corn leaf for high-performance supercapacitors application. J Phys D Appl Phys 50:055501. doi:10.1088/1361-6463/50/5/055501

    Article  Google Scholar 

  • Yang X, Li C, Fu R (2016) Nitrogen-enriched carbon with extremely high mesoporosity and tunable mesopore size for high-performance supercapacitors. J Power Sources 319:66–72. doi:10.1016/j.jpowsour.2016.04.037

    Article  Google Scholar 

  • Yang X, Yu J, Zhang W, Zhang G (2017b) Mesopore-dominant wormhole-like carbon with high supercapacitive performance in organic electrolyte. RSC Adv 7:15096–15101. doi:10.1039/c7ra00446j

    Article  Google Scholar 

  • Yang X, Zhang G, Zhong M, Wu D, Fu R (2014) Ammonia-assisted semicarbonization: a simple method to introduce micropores without damaging a 3D mesoporous carbon nanonetwork structure. Langmuir ACS J Surf Colloids 30:9183–9189. doi:10.1021/la5008846

    Article  Google Scholar 

  • Zhang Y, Li L, Su H, Huang W, Dong X (2015) Binary metal oxide: advanced energy storage materials in supercapacitors. J Mater Chem a 3:43–59. doi:10.1039/c4ta04996a

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the financial supports provided by National Natural Science Foundation of China (No. 21471160), the Fundamental Research Funds for the Central Universities (16CX05014A, 16CX05016A), and the Taishan Scholar Program of Shandong Province.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yan Zhou or Changhua An.

Ethics declarations

Funding

This study was funded by National Natural Science Foundation of China (No. 21471160), the Fundamental Research Funds for the Central Universities (16CX05014A, 16CX05016A), and the Taishan Scholar Program of Shandong Province.

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(DOC 1188 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., Li, C., Xiao, H. et al. Synthesis of 3D flower-like cobalt sulfide hierachitecture for high-performance electrochemical energy storage. J Nanopart Res 19, 202 (2017). https://doi.org/10.1007/s11051-017-3905-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-017-3905-8

Keywords

Navigation