DNA-assisted decoration of single-walled carbon nanotubes with gold nanoparticles for applications in surface-enhanced Raman scattering imaging of cells

  • Elena-Laura Ursu
  • Florica Doroftei
  • Dragos Peptanariu
  • Mariana Pinteala
  • Alexandru RotaruEmail author
Research Paper


Single-walled carbon nanotubes (SWNTs) are 1D nanostructures with distinct physical and chemical properties that have shown great promise for applications in many fields, including biomedicine. Since for biomedical application the water solubility is crucial and SWNTs have low solubility, various methods (including polymer and biopolymer wrapping, chemical modifications) have been developed to solubilize and disperse them in water. Due to their unique optical properties such as photoluminescence in the NIR and strong resonant Raman signatures, they can be used as nanoprobes in biomedical imaging and phototherapies. Furthermore, decoration of SWNTs with noble metal nanoparticles will induce an excellent surface-enhanced Raman scattering (SERS) effect of the nanoparticles-SWNTs composites, with applications in cell imaging. Herein, we present a new and facile strategy for the DNA-assisted decoration of SWNTs with gold nanoparticles (AuNPs) and their application in SERS imaging. By ultrasonication at room temperature of SWNTs with AuNPs functionalized with synthetic DNA, SWNT-AuNPs nanocomposites with enhanced Raman signal were obtained. Among the important advantages of the proposed method are the presence of the free DNA overhangs around the SWNT-AuNPs suitable for post-synthetic modification of nanocomposite through hybridization of complementary DNA strands containing molecules of interest attached by well-developed bio-conjugation chemistry.

Graphical abstract


Single-walled carbon nanotubes DNA Gold nanoparticles Surface-enhanced Raman scattering Cell imaging Biomedicine 



This work was supported by a grant of the Romanian National Authority for Scientific Research and Innovation, CNCS-UEFISCDI, project number PN-II-RU-TE-2014-4-1444. This publication is also part of a project that has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement no. 667387.

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary material

11051_2017_3876_MOESM1_ESM.docx (10.5 mb)
ESM 1 (DOCX 10725 kb)


  1. Azamian BR, Coleman KS, Davis JJ, Hanson N, Green MLH (2002) Directly observed covalent coupling of quantum dots to single-wall carbon nanotubes. Chem Commun 4:366–367. doi: 10.1039/B110690B CrossRefGoogle Scholar
  2. Bartelmess J, Quinn SJ, Giordani S (2015a) Carbon nanomaterials: multi-functional agents for biomedical fluorescence and Raman imaging. Chem Soc Rev 44:4672–4698. doi: 10.1039/c4cs00306c CrossRefGoogle Scholar
  3. Bartelmess J, Quinn SJ, Giordani S (2015b) Carbon nanomaterials: multi-functional agents for biomedical fluorescence and Raman imaging. Chem Soc Rev 44:4672–4698. doi: 10.1039/C4CS00306C CrossRefGoogle Scholar
  4. Beqa L, Singh AK, Fan Z, Senapati D, Ray PC (2011) Chemically attached gold nanoparticles carbon nanotube hybrids for highly sensitive SERS substrate. Chem Phys Lett 512:237–242. doi: 10.1016/j.cplett.2011.07.037 CrossRefGoogle Scholar
  5. Camargo PHC, Au L, Rycenga M, Li W, Xia Y (2010) Measuring the SERS enhancement factors of dimers with different structures constructed from silver nanocubes. Chem Phys Lett 484:304–308. doi: 10.1016/j.cplett.2009.12.002 CrossRefGoogle Scholar
  6. Cao YC, Jin R, Mirkin CA (2002) Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection. Science 297:1536–1540. doi: 10.1126/science.297.5586.1536 CrossRefGoogle Scholar
  7. Chen Z, Tabakman SM, Goodwin AP, Kattah MG, Daranciang D, Wang X, Zhang G, Li X, Liu Z, Utz P, Jiang K, Fan S, Dai H (2008) Protein microarrays with carbon nanotubes as multicolor Raman labels. Nat Biotechnol 26:1285–1292. doi: 10.1038/nbt.1501 CrossRefGoogle Scholar
  8. Choi HC, Shim M, Bangsaruntip S, Dai H (2002) Spontaneous reduction of metal ions on the sidewalls of carbon nanotubes. J Am Chem Soc 124:9058–9059. doi: 10.1021/ja026824t CrossRefGoogle Scholar
  9. Chu H, Wei L, Cui R, Wang J, Li Y (2010) Carbon nanotubes combined with inorganic nanomaterials: preparations and applications. Coordin ChemRev 254:1117–1134. doi: 10.1016/j.ccr.2010.02.009 CrossRefGoogle Scholar
  10. Ding BQ, Deng ZT, Yan H, Cabrini S, Zuckermann RN, Bokor J (2010) Gold nanoparticle self-similar chain structure organized by DNA origami. J Am Chem Soc 132:3248–3249. doi: 10.1021/ja9101198 CrossRefGoogle Scholar
  11. Han X, Li Y, Deng Z (2007) DNA-wrapped single walled carbon nanotubes as rigid templates for assembling linear gold nanoparticle arrays. Adv Mater 19:1518–1522. doi: 10.1002/adma.200602861 CrossRefGoogle Scholar
  12. Heller DA, Baik S, Eurell TE, Strano MS (2005) Single-walled carbon nanotube spectroscopy in live cells: towards long-term labels and optical sensors. Adv Mater 17:2793–2799. doi: 10.1002/adma.200500477 CrossRefGoogle Scholar
  13. Kam N, Liu Z, Dai H (2005) Functionalization of carbon nanotubes via cleavable disulfide bonds for efficient intracellular delivery of siRNA and potent Gene silencing. J Am Chem Soc 127:12492–12493. doi: 10.1021/ja053962k CrossRefGoogle Scholar
  14. Krafft C, Schie IW, Meyer T, Schmitt M, Popp J (2016) Developments in spontaneous and coherent Raman scattering microscopic imaging for biomedical applications. Chem Soc Rev 45:1819–1849. doi: 10.1039/C5CS00564G CrossRefGoogle Scholar
  15. Li Y, Han X, Deng Z (2007) Grafting single-walled carbon nanotubes with highly hybridizable DNA sequences: potential building blocks for DNA-programmed material assembly. Angew Chem Int Ed 46:7481–7484. doi: 10.1002/anie.200701748 CrossRefGoogle Scholar
  16. Liu X, Tao H, Yang K, Zhang S, Lee ST, Liu Z (2011a) Optimization of surface chemistry on single-walled carbon nanotubes for in vivo photothermal ablation of tumors. Biomaterials 32:144–151. doi: 10.1016/j.biomaterials.2010.08.096 CrossRefGoogle Scholar
  17. Liu Z, Li X, Tabakman S, Jiang K, Fan S, Dai H (2008) Multiplexed multicolor Raman imaging of live cells with isotopically modified single walled carbon nanotubes. J Am Chem Soc 130:13540–13541. doi: 10.1021/ja806242t CrossRefGoogle Scholar
  18. Liu Z, Yang K, Lee ST (2011b) Single-walled carbon nanotubes in biomedical imaging. J Mater Chem 21:586–598. doi: 10.1039/C0JM02020F CrossRefGoogle Scholar
  19. Malik S, Vogel S, Rosner H, Arnold K, Hennrich F, Kohler AK, Richert C, Kappes MM (2007) Physical chemical characterization of DNA–SWNT suspensions and associated composites. Compos Sci Technol 67:916–921. doi: 10.1016/j.compscitech.2005.11.041 CrossRefGoogle Scholar
  20. Meng L, Xia W, Liu L, Niu L, Lu Q (2014) Golden single-walled carbon nanotubes prepared using double layer polysaccharides bridge for photothermal therapy. ACS Appl Mater Interfaces 6:4989–4996. doi: 10.1021/am406031n CrossRefGoogle Scholar
  21. Mikoliunaite L, Rodriguez RD, Sheremet E, Kolchuzhin V, Mehner J, Ramanavicius A, Zahn DRT (2015) The substrate matters in the Raman spectroscopy analysis of cells. Scientific Reports 5:13150–13160. doi: 10.1038/srep13150 CrossRefGoogle Scholar
  22. Moghaddam MJ, Taylor S, Gao M, Huang S, Dai L, McCall MJ (2004) Highly efficient binding of DNA on the sidewalls and tips of carbon nanotubes using photochemistry. Nano Lett 4:89–93. doi: 10.1021/nl034915y CrossRefGoogle Scholar
  23. Pal S, Dutta P, Wang H, Deng Z, Zou S, Yan H, Liu Y (2013) Quantum efficiency modification of organic fluorophores using gold nanoparticles on DNA origami scaffolds. J Phys Chem C 117:12735–12744. doi: 10.1021/jp312422n CrossRefGoogle Scholar
  24. Polte J, Ahner TT, Delissen F, Sokolov S, Emmerling F, Thünemann AF, Kraehnert R (2010) Mechanism of gold nanoparticle formation in the classical citrate synthesis method derived from coupled in situ XANES and SAXS evaluation. J Am Chem Soc 132:1296–1301. doi: 10.1021/ja906506j CrossRefGoogle Scholar
  25. Qian X, Peng XH, Ansari DO, Yin-Goen Q, Chen GZ, Shin DM, Yang L, Young AN, Wang MD, Nie S (2008) In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags. Nat Biotechnol 26:83–90. doi: 10.1038/nbt1377 CrossRefGoogle Scholar
  26. Quinn BM, Dekker C, Lemay SG (2005) Electrodeposition of noble metal nanoparticles on carbon nanotubes. J Am Chem Soc 127:6146–6147. doi: 10.1021/ja0508828 CrossRefGoogle Scholar
  27. Rao AM, Richter E, Bandow S, Chase B, Eklund PC, Williams KA, Fang S, Subbaswamy KR, Menon M, Thess A, Smalley RE, Dresselhaus G, Dresselhaus MS (1997) Diameter-selective Raman scattering from vibrational modes in carbon nanotubes. Science 275:187–191. doi: 10.1126/science.275.5297.187 CrossRefGoogle Scholar
  28. Schoeppler F, Mann C, Hain TC, Neubauer FM, Privitera G, Bonaccorso F, Chu D, Ferrari AC, Hertel T (2011) Molar extinction coefficient of single-wall carbon nanotubes. J Phys Chem C 115:14682–14686. doi: 10.1021/jp205289h CrossRefGoogle Scholar
  29. Shtein M, Pri-bara I, Regev O (2013) A simple solution for the determination of pristine carbon nanotube concentration. Analyst 138:1490–1496. doi: 10.1039/c2an36399b CrossRefGoogle Scholar
  30. Turkevich J, Stevenson PC, Hillier J (1951) A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss Faraday Soc 11:55–75. doi: 10.1039/DF9511100055 CrossRefGoogle Scholar
  31. Wang X, Wang C, Cheng L, Lee ST, Liu Z (2012) Noble metal coated single-walled carbon nanotubes for applications in surface enhanced Raman scattering imaging and photothermal therapy. J Am Chem Soc 134:7414–7422. doi: 10.1021/ja300140c CrossRefGoogle Scholar
  32. Yang W, Ratinac KR, Ringer SP, Thordarson P, Gooding JJ, Braet F (2010) Carbon nanomaterials in biosensors: should you use nanotubes or graphene? Angew Chem Int Ed Engl 49:2114–2138. doi: 10.1002/anie.200903463 CrossRefGoogle Scholar
  33. Zavaleta CL, Smith BR, Walton I, Doering W, Davis G, Shojaei B, Natan MJ, Gambhir SS (2009) Multiplexed imaging of surface enhanced Raman scattering nanotags in living mice using noninvasive Raman spectroscopy. Proc Natl Acad Sci U S A 106:13511–13516. doi: 10.1073/pnas.0813327106 CrossRefGoogle Scholar
  34. Zheng M, Jagota A, Semke ED, Diner BA, Mclean RS, Lustig SR, Richardson RE, Tassi NG (2003) DNA-assisted dispersion and separation of carbon nanotubes. Nat Mater 2:338–342. doi: 10.1038/nmat877 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Elena-Laura Ursu
    • 1
  • Florica Doroftei
    • 1
  • Dragos Peptanariu
    • 1
  • Mariana Pinteala
    • 1
  • Alexandru Rotaru
    • 1
    Email author
  1. 1.Romanian Academy, Centre of Advanced Research in Bionanoconjugates and Biopolymers“Petru Poni” Institute of Macromolecular ChemistryIașiRomania

Personalised recommendations