Skip to main content
Log in

Optimized permeation and antifouling of PVDF hybrid ultrafiltration membranes: synergistic effect of dispersion and migration for fluorinated graphene oxide

  • Brief Communication
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Nanoparticles may have suffered from low modification efficiency in hybrid membranes due to embedding and aggregating in polymer matrix. In order to analyze the modification mechanisms of nanoparticle migration and dispersion on the properties of hybrid membranes, we designed different F/O ratios (R F/O ) of fluorinated graphene oxide (FGO, diameter = 1.5 ~ 17.5 μm) by carbon tetrafluoride (CF4) plasma treatment GO for 3, 5, 10, 15, and 20 min and successfully prepared novel PVDF hybrid membranes containing FGO via the phase inversion method. After a prolonged plasma treatment, the R F/O of FGO was enhanced sharply, indicating an increasing compatibility of FGO with the matrix, especially FGO-20 (GO treated for 20 min). FGO contents in the top layer, sublayer, and the whole of membranes were probed by X-ray photoelectron spectroscopy, energy-dispersive spectrometer, and indirect computation, respectively. In the top layer of membranes, FGO contents declined from 13.14 wt% (PVDF/GO) to 4.00 wt% (PVDF/FGO-10) and 1.96 wt% (PVDF/FGO-20) due to the reduced migration ability of FGO. It is worth mentioning that PVDF/FGO-10 membranes exhibited an excellent water flux and flux recovery rate (up to 406.90 L m−2 h−1 and 88.9%), which were improved by 67.3% and 14.6% and 52.5% and 24.0% compared with those of PVDF/GO and PVDF/FGO-20 membranes, respectively, although the dispersion and migration ability of FGO-10 was maintained at a moderate level. It indicated that the migration and dispersion of FGO in membranes could result in dynamic equilibrium, which played a key role in making the best use of nanomaterials to optimize membrane performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  • Asatekin A, Kang S, Elimelech M, Mayes AM (2007) Anti-fouling ultrafiltration membranes containing polyacrylonitrile-graft-poly(ethylene oxide) comb copolymer additives. J Membr Sci 298(1–2):136–146. doi:10.1016/j.memsci.2007.04.011

    Article  Google Scholar 

  • Chang X, Wang Z, Quan S, Xu Y, Jiang Z, Shao L (2014) Exploring the synergetic effects of graphene oxide (GO) and polyvinylpyrrodione (PVP) on poly(vinylylidenefluoride) (PVDF) ultrafiltration membrane performance. Appl Surf Sci 316:537–548. doi:10.1016/j.apsusc.2014.07.202

    Article  Google Scholar 

  • Chen W, Su Y, Peng J, Dong Y, Zhao X, Jiang Z (2011) Engineering a robust, versatile amphiphilic membrane surface through forced surface segregation for ultralow flux-decline. Adv Funct Mater 21(1):191–198. doi:10.1002/adfm.201001384

    Article  Google Scholar 

  • Cui Z, Drioli E, Lee YM (2014) Recent progress in fluoropolymers for membranes. Prog Polym Sci 39(1):164–198. doi:10.1016/j.progpolymsci.2013.07.008

    Article  Google Scholar 

  • Goh PS, Ng BC, Lau WJ, Ismail AF (2014) Inorganic nanomaterials in polymeric ultrafiltration membranes for water treatment. Sep Purif Rev 44(3):216–249. doi:10.1080/15422119.2014.926274

    Article  Google Scholar 

  • Gorzalski AS, Donley C, Coronell O (2017) Elemental composition of membrane foulant layers using EDS, XPS, and RBS. J Membr Sci 522:31–44. doi:10.1016/j.memsci.2016.08.055

    Article  Google Scholar 

  • Greenlee LF, Rentz NS (2016) Influence of nanoparticle processing and additives on PES casting solution viscosity and cast membrane characteristics. Polymer 103:498–508. doi:10.1016/j.polymer.2016.04.021

    Article  Google Scholar 

  • Hashim NA, Liu F, Li K (2009) A simplified method for preparation of hydrophilic PVDF membranes from an amphiphilic graft copolymer. J Membr Sci 345(1–2):134–141. doi:10.1039/C5TA05306D

    Article  Google Scholar 

  • Hong J, He Y (2014) Polyvinylidene fluoride ultrafiltration membrane blended with nano-ZnO particle for photo-catalysis self-cleaning. Desalination 332(1):67–75. doi:10.1016/j.desal.2013.10.026

    Article  Google Scholar 

  • Ji Y-L, An Q-F, Zhao Q, Sun W-D, Lee K-R, Chen H-L, Gao C-J (2012) Novel composite nanofiltration membranes containing zwitterions with high permeate flux and improved anti-fouling performance. J Membr Sci 390-391:243–253. doi:10.1016/j.memsci.2011.11.047

    Article  Google Scholar 

  • Jiang B, Tao PH, Huang YD (2014) Study of the adsorption performance and preparation of functional nano-silica pigment particles. Dyes Pigments 104:169–174. doi:10.1016/j.dyepig.2014.01.009

    Article  Google Scholar 

  • Johnson D, Hilal N (2015) Characterisation and quantification of membrane surface properties using atomic force microscopy: a comprehensive review. Desalination 356:149–164. doi:10.1016/j.desal.2014.08.019

    Article  Google Scholar 

  • Li Q, Q-y B, Lin H-H, Bian L-X, Wang X-L (2013) A novel ultrafiltration (UF) membrane with controllable selectivity for protein separation. J Membr Sci 427:155–167. doi:10.1016/j.memsci.2012.09.010

    Article  Google Scholar 

  • Li X, Li J, Fang X, Bakzhan K, Wang L, Van der Bruggen B (2016) A synergetic analysis method for antifouling behavior investigation on PES ultrafiltration membrane with self-assembled TiO2 nanoparticles. J Colloid Interf Sci 469:164–176. doi:10.1016/j.jcis.2016.02.002

    Article  Google Scholar 

  • Liang S, Xiao K, Mo Y, Huang X (2012) A novel ZnO nanoparticle blended polyvinylidene fluoride membrane for anti-irreversible fouling. J Membr Sci 394-395:184–192. doi:10.1016/j.memsci.2011.12.040

    Article  Google Scholar 

  • Liu HY, Zhang GQ, Zhao CQ, Liu JD, Yang FL (2015a) Hydraulic power and electric field combined antifouling effect of novel conductive poly(aminoanthraquinone)/reduced graphene oxide nanohybrid blended PVDF ultrafiltration membrane. J Mater Chem A 3:20277–20287. doi:10.1039/C5TA05306D

    Article  Google Scholar 

  • Liu Y, Su Y, Li Y, Zhao X, Jiang Z (2015b) Improved antifouling property of PVDF membranes by incorporating an amphiphilic block-like copolymer for oil/water emulsion separation. RSC Adv 5(27):21349–21359. doi:10.1039/c4ra16290k

    Article  Google Scholar 

  • Liu Y et al (2015c) Investigation of antifouling universality of polyvinyl formal (PVF) membranes utilizing atomic force microscope (AFM) force curves. RSC Adv 5(46):36894–36901. doi:10.1039/c5ra05380c

    Article  Google Scholar 

  • Ma J et al (2013) Role of oxygen-containing groups on MWCNTs in enhanced separation and permeability performance for PVDF hybrid ultrafiltration membranes. Desalination 320:1–9. doi:10.1016/j.desal.2013.04.012

    Article  Google Scholar 

  • Malinga SP, Arotiba OA, Krause RWM, Mapolie SF, Diallo MS, Mamba BB (2013) Composite polyester membranes with embedded dendrimer hosts and bimetallic Fe/Ni nanoparticles: synthesis, characterisation and application to water treatment. J Nanopart Res 15(6). doi:10.1007/s11051-013-1698-y

  • María Arsuaga J, Sotto A, del Rosario G, Martínez A, Molina S, Teli SB, de Abajo J (2013) Influence of the type, size, and distribution of metal oxide particles on the properties of nanocomposite ultrafiltration membranes. J Membr Sci 428:131–141. doi:10.1016/j.memsci.2012.11.008

    Article  Google Scholar 

  • Meng N, Wang Z, Low Z-X, Zhang Y, Wang H, Zhang X (2015) Impact of trace graphene oxide in coagulation bath on morphology and performance of polysulfone ultrafiltration membrane. Sep Purif Technol 147:364–371. doi:10.1016/j.seppur.2015.02.043

    Article  Google Scholar 

  • Meng N, Priestley RCE, Zhang Y, Wang H, Zhang X (2016) The effect of reduction degree of GO nanosheets on microstructure and performance of PVDF/GO hybrid membranes. J Membr Sci 501:169–178. doi:10.1016/j.memsci.2015.12.004

    Article  Google Scholar 

  • Miao R, Wang L, Wang X, Lv Y, Gao Z, Mi N, Liu T (2015) Preparation of a polyvinylidene fluoride membrane material probe and its application in membrane fouling research. Desalination 357:171–177. doi:10.1016/j.desal.2014.11.029

    Article  Google Scholar 

  • Mo Y, Tiraferri A, Yip NY, Adout A, Huang X, Elimelech M (2012) Improved antifouling properties of polyamide nanofiltration membranes by reducing the density of surface carboxyl groups. Environ Sci Technol 46:13253–13261. doi:10.1021/es303673p

    Article  Google Scholar 

  • Moghadam MT et al (2015) Improved antifouling properties of TiO2/PVDF nanocomposite membranes in UV-coupled ultrafiltration. J Appl Polym Sci 41731:1–13. doi:10.1002/app.41731

    Google Scholar 

  • Pang R, Li X, Li J, Lu Z, Sun X, Wang L (2014) Preparation and characterization of ZrO2/PES hybrid ultrafiltration membrane with uniform ZrO2 nanoparticles. Desalination 332(1):60–66. doi:10.1016/j.desal.2013.10.024

    Article  Google Scholar 

  • Rahimpour A, Jahanshahi M, Khalili S, Mollahosseini A, Zirepour A, Rajaeian B (2012) Novel functionalized carbon nanotubes for improving the surface properties and performance of polyethersulfone (PES) membrane. Desalination 286:99–107. doi:10.1016/j.desal.2011.10.039

    Article  Google Scholar 

  • Rana D, Matsuura T (2010) Surface modifications for antifouling membranes. Chem Rev 110:2448–2471. doi:10.1021/cr800208y

    Article  Google Scholar 

  • Shao L, Wang ZX, Zhang YL, Jiang ZX, Liu YY (2014) A facile strategy to enhance PVDF ultrafiltration membrane performance via self-polymerized polydopamine followed by hydrolysis of ammonium fluotitanate. J Membr Sci 461:10–21. doi:10.1016/j.memsci.2014.03.006

    Article  Google Scholar 

  • Shi C et al (2012) Monitoring influence of chemical preparation procedure on the structure of graphene nanosheets. Phys E 44(7–8):1420–1424. doi:10.1016/j.physe.2012.03.004

    Article  Google Scholar 

  • Sui Y, Wang Z, Gao X, Gao C (2012) Antifouling PVDF ultrafiltration membranes incorporating PVDF-g-PHEMA additive via atom transfer radical graft polymerizations. J Membr Sci 413-414:38–47. doi:10.1016/j.memsci.2012.03.055

    Article  Google Scholar 

  • Sukitpaneenit P, Chung T-S (2009) Molecular elucidation of morphology and mechanical properties of PVDF hollow fiber membranes from aspects of phase inversion, crystallization and rheology. J Membr Sci 340(1–2):192–205. doi:10.1016/j.memsci.2009.05.029

    Article  Google Scholar 

  • Tan X, Tan SP, Teo WK, Li K (2006) Polyvinylidene fluoride (PVDF) hollow fibre membranes for ammonia removal from water. J Membr Sci 271(1–2):59–68. doi:10.1016/j.memsci.2005.06.057

    Article  Google Scholar 

  • Vatanpour V, Madaeni SS, Rajabi L, Zinadini S, Derakhshan AA (2012) Boehmite nanoparticles as a new nanofiller for preparation of antifouling mixed matrix membranes. J Membr Sci 401-402:132–143. doi:10.1016/j.memsci.2012.01.040

    Article  Google Scholar 

  • Wang L, Y-l S, Zheng L, Chen W, Jiang Z (2009) Highly efficient antifouling ultrafiltration membranes incorporating zwitterionic poly([3-(methacryloylamino)propyl]-dimethyl(3-sulfopropyl) ammonium hydroxide). J Membr Sci 340(1–2):164–170. doi:10.1016/j.memsci.2009.05.027

    Article  Google Scholar 

  • Wang P, Ma J, Wang Z, Shi F, Liu Q (2012a) Enhanced separation performance of PVDF/PVP-g-MMT nanocomposite ultrafiltration membrane based on the NVP-grafted polymerization modification of montmorillonite (MMT). Langmuir 28(10):4776–4786. doi:10.1021/la203494z

    Article  Google Scholar 

  • Wang X, Xing W, Zhang P, Song L, Yang H, Hu Y (2012b) Covalent functionalization of graphene with organosilane and its use as a reinforcement in epoxy composites. Compos Sci Technol 72(6):737–743. doi:10.1016/j.compscitech.2012.01.027

    Article  Google Scholar 

  • Wang Z, Yu H, Xia J, Zhang F, Li F, Xia Y, Li Y (2012c) Novel GO-blended PVDF ultrafiltration membranes. Desalination 299:50–54. doi:10.1016/j.desal.2012.05.015

    Article  Google Scholar 

  • Wang Z, Wei Y-M, Xu Z-L, Cao Y, Dong Z-Q, Shi X-L (2016) Preparation, characterization and solvent resistance of γ-Al2O3/α-Al2O3 inorganic hollow fiber nanofiltration membrane. J Membr Sci 503:69–80. doi:10.1016/j.memsci.2015.12.039

    Article  Google Scholar 

  • Wu H, Tang B, Wu P (2010) Novel ultrafiltration membranes prepared from a multi-walled carbon nanotubes/polymer composite. J Membr Sci 362(1–2):374–383

    Article  Google Scholar 

  • Wu H, Tang B, Wu P (2014) Development of novel SiO2–GO nanohybrid/polysulfone membrane with enhanced performance. J Membr Sci 451:94–102. doi:10.1016/j.memsci.2013.09.018

    Article  Google Scholar 

  • Wu T, Zhou B, Zhu T, Shi J, Xu Z, Hu C, Wang J (2015) Facile and low-cost approach towards a PVDF ultrafiltration membrane with enhanced hydrophilicity and antifouling performance via graphene oxide/water-bath coagulation. RSC Adv 5(11):7880–7889. doi:10.1039/c4ra13476a

    Article  Google Scholar 

  • Xu Z et al (2014) Organosilane-functionalized graphene oxide for enhanced antifouling and mechanical properties of polyvinylidene fluoride ultrafiltration membranes. J Membr Sci 458:1–13. doi:10.1016/j.memsci.2014.01.050

    Article  Google Scholar 

  • Xu Z et al (2016) Manipulating migration behavior of magnetic graphene oxide via magnetic field induced casting and phase separation toward high-performance hybrid ultrafiltration membranes. ACS Appl Mater Inter 8(28):18418–18429. doi:10.1021/acsami.6b04083

    Article  Google Scholar 

  • Yang X et al (2011) Preparation of the antifouling microfiltration membranes from poly(N,N-dimethylacrylamide) grafted poly(vinylidene fluoride) (PVDF) powder. J Mater Chem 21(32):11908. doi:10.1039/c1jm11348h

    Article  Google Scholar 

  • Yeow ML, Liu YT, Li K (2004) Morphological study of poly(vinylidene fluoride) asymmetric membranes: effects of the solvent, additive, and dope temperature. J Appl Polym Sci 92(3). doi:10.1002/app.20141

  • Zhang P-Y, Xu Z-L, Yang H, Wei Y-M, Wu W-Z (2013a) Fabrication and characterization of PVDF membranes via an in situ free radical polymerization method. Chem Eng Sci 97:296–308. doi:10.1016/j.ces.2013.03.058

    Article  Google Scholar 

  • Zhang G, Lu S, Zhang L, Meng Q, Shen C, Zhang J (2013b) Novel polysulfone hybrid ultrafiltration membrane prepared with TiO2-g-HEMA and its antifouling characteristics. J Membr Sci 436:163–173. doi:10.1016/j.memsci.2013.02.009

    Article  Google Scholar 

  • Zhang J et al (2013c) Improved hydrophilicity, permeability, antifouling and mechanical performance of PVDF composite ultrafiltration membranes tailored by oxidized low-dimensional carbon nanomaterials. J Mater Chem A 1(9):3101. doi:10.1016/j.memsci.2013.07.064

    Article  Google Scholar 

  • Zhang J et al (2013d) Synergetic effects of oxidized carbon nanotubes and graphene oxide on fouling control and anti-fouling mechanism of polyvinylidene fluoride ultrafiltration membranes. J Membr Sci 448:81–92. doi:10.1016/j.memsci.2013.07.064

    Article  Google Scholar 

  • Zhang W, Zhang Y, Fan R, Lewis R (2016) A facile TiO2/PVDF composite membrane synthesis and their application in water purification. J Nanopart Res 18(1). doi:10.1007/s11051-015-3281-1

  • Zhao H, Wu L, Zhou Z, Zhang L, Chen H (2013a) Improving the antifouling property of polysulfone ultrafiltration membrane by incorporation of isocyanate-treated graphene oxide. Phys Chem Chem Phys 15(23):9084–9092. doi:10.1039/c3cp50955a

    Article  Google Scholar 

  • Zhao Y-F, Zhu L-P, Yi Z, Zhu B-K, Xu Y-Y (2013b) Improving the hydrophilicity and fouling-resistance of polysulfone ultrafiltration membranes via surface zwitterionicalization mediated by polysulfone-based triblock copolymer additive. J Membr Sci 440:40–47. doi:10.1016/j.memsci.2013.03.064

    Article  Google Scholar 

  • Zhao Y et al (2013c) Effect of graphite oxide and multi-walled carbon nanotubes on the microstructure and performance of PVDF membranes. Sep Purif Technol 103:78–83. doi:10.1016/j.seppur.2012.10.012

    Article  Google Scholar 

  • Zhao X, Su Y, Li Y, Zhang R, Zhao J, Jiang Z (2014) Engineering amphiphilic membrane surfaces based on PEO and PDMS segments for improved antifouling performances. J Membr Sci 450:111–123. doi:10.1016/j.memsci.2013.08.044

    Article  Google Scholar 

  • Zhou B et al (2015) Tailoring the chemical composition and dispersion behavior of fluorinated graphene oxide via CF4 plasma. J Nanopart Res 17(3). doi:10.1007/s11051-015-2946-0

  • Zhu LJ, Zhu LP, Jiang JH, Yi Z, Zhao YF, Zhu BK, Xu YY (2014a) Hydrophilic and anti-fouling polyethersulfone ultrafiltration membranes with poly(2-hydroxyethyl methacrylate) grafted silica nanoparticles as additive. J Membr Sci 451:157–168. doi:10.1016/j.memsci.2013.09.053

    Article  Google Scholar 

  • Zhu LJ, Zhu LP, Zhao YF, Zhu BK, Xu YY (2014b) Anti-fouling and anti-bacterial polyethersulfone membranes quaternized from the additive of poly(2-dimethylamino ethyl methacrylate) grafted SiO2 nanoparticles. J Mater Chem A 2(37):15566. doi:10.1039/c4ta03199g

    Article  Google Scholar 

  • Zhu J, Zhao X, He C (2015) Zwitterionic SiO2 nanoparticles as novel additives to improve the antifouling properties of PVDF membranes. RSC Adv 5(66):53653–53659. doi:10.1039/c5ra05571g

    Article  Google Scholar 

  • Zhu LJ, Zhu LP, Zhang PB, Zhu BK, Xu YY (2016) Surface zwitterionicalization of poly(vinylidene fluoride) membranes from the entrapped reactive core-shell silica nanoparticles. J Colloid Interf Sci 468:110–119. doi:10.1016/j.jcis.2016.01.043

    Article  Google Scholar 

Download references

Acknowledgements

The work was funded by the National Natural Science Foundation of China (11575126), the Qaidam Salt Chemical Joint Fund of National Natural Science Foundation of China, People’s Government of Qinghai Province (U1607117), the Natural Science Foundation of Tianjin (16JCZDJC36400), and the Science and Technology Plans of Tianjin (15PTSYJC00230).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhiwei Xu or Xiaoming Qian.

Ethics declarations

Conflict of interest

The authors declared that they have no conflicts of interest to this work.

Electronic supplementary material

.

ESM 1

(DOCX 1836 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Shi, J., Chen, C. et al. Optimized permeation and antifouling of PVDF hybrid ultrafiltration membranes: synergistic effect of dispersion and migration for fluorinated graphene oxide. J Nanopart Res 19, 114 (2017). https://doi.org/10.1007/s11051-017-3820-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-017-3820-z

Keywords

Navigation