Advertisement

Colloidal behavior of goethite nanoparticles modified with humic acid and implications for aquifer reclamation

  • Alberto Tiraferri
  • Laura Andrea Saldarriaga Hernandez
  • Carlo Bianco
  • Tiziana Tosco
  • Rajandrea Sethi
Research Paper

Abstract

Nanosized colloids of iron oxide adsorb heavy metals, enhance the biodegradation of contaminants, and represent a promising technology to clean up contaminated aquifers. Goethite particles for aquifer reclamation were recently synthesized with a coating of humic acids to reduce aggregation. This study investigates the stability and the mobility in porous media of this material as a function of aqueous chemistry, and it identifies the best practices to maximize the efficacy of the related remediation. Humic acid-coated nanogoethite (hydrodynamic diameter ∼90 nm) displays high stability in solutions of NaCl, consistent with effective electrosteric stabilization. However, particle aggregation is fast when calcium is present and, to a lesser extent, also in the presence of magnesium. This result is rationalized with complexation phenomena related to the interaction of divalent cations with humic acid, inducing rapid flocculation and sedimentation of the suspensions. The calcium dose, i.e., the amount of calcium ions with respect to solids in the dispersion, is the parameter governing stability. Therefore, more concentrated slurries may be more stable and mobile in the subsurface than dispersions of low particle concentration. Particle concentration during field injection should be thus chosen based on concentration and proportion of divalent cations in groundwater.

Graphical abstract

Goethite nanoparticles are used in contaminated site remediation. The particles are stable in monovalent ion solutions due to an adsorbed layer of humic acids. Above a threshold dose of divalent cations, particles aggregate and sediment. High particle/calcium ratios increase colloidal stability. Stability in suspension and transport in porous media correlate well. Delivery into subsurface can be improved by either increasing particle concentration or reducing divalent cation content in the carrier fluid.

Keywords

Particle stability Site remediation Humic acid Calcium bridging Aggregation Transport Porous media Goethite Calcium dose Environmental effects Pollution 

Notes

Acknowledgments

This work was partly funded by H2020 EU project “Reground,” G.A. no. 641768. We are grateful to Dr. Rainer Meckenstock (University of Duisburg-Essen, Germany) for providing the goethite particles stock suspension. We thank Fabrizio Bianco and Dr. Adriano Fiorucci (Politecnico di Torino) for their chemical analyses on tap water.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interest.

Supplementary material

11051_2017_3814_MOESM1_ESM.pdf (1.6 mb)
ESM 1 Electrophoretic mobility of humic acid-coated goethite nanoparticle suspensions as a function of ionic strength. Examples of raw data from aggregation experiments. Apparent aggregation rate as a function of slurry concentration in the presence of 0.7 mM CaCl2. Additional results of sedimentation experiments at varying concentration of CaCl2 and MgCl2. Pictures of sedimentation vials for different doses of calcium. Representative results of sedimentation experiments of suspensions from which most of the unadsorbed humic acid were removed by filtration. Breakthrough curves of humic acid-coated goethite nanoparticles (total solid content of 1.70 g/L) in silica sand in 10 mM NaCl. Pictures of the column during transport tests carried out in 1.5 mM CaCl2 and 10 g/L solid content. Pictures of sedimentation vials for different dilutions in tap water. Results of transport tests conducted with suspensions diluted with tap water (PDF). (PDF 1658 kb)

References

  1. Baalousha M (2009) Aggregation and disaggregation of iron oxide nanoparticles: influence of particle concentration, pH and natural organic matter. Sci Total Environ 407(6):2093–2101. doi: 10.1016/j.scitotenv.2008.11.022 CrossRefGoogle Scholar
  2. Benjamin MM, Sletten RS, Bailey RP, Bennett T (1996) Sorption and filtration of metals using iron-oxide-coated sand. Water Res 30(11):2609–2620. doi: 10.1016/S0043-1354(96)00161-3 CrossRefGoogle Scholar
  3. Bianco C, Tosco T, Sethi R (2016) A 3-dimensional micro-and nanoparticle transport and filtration model (MNM3D) applied to the migration of carbon-based nanomaterials in porous media. J Contam Hydrol 193:10–20. doi: 10.1016/j.jconhyd.2016.08.006 CrossRefGoogle Scholar
  4. Bosch J, Heister K, Hofmann T, Meckenstock RU (2010) Nanosized iron oxide colloids strongly enhance microbial iron reduction. Appl Environ Microb 76(1):184–189. doi: 10.1128/Aem.00417-09 CrossRefGoogle Scholar
  5. Braunschweig J, Bosch J, Meckenstock RU (2013) Iron oxide nanoparticles in geomicrobiology: from biogeochemistry to bioremediation. New Biotechnol 30(6):793–802. doi: 10.1016/j.nbt.2013.03.008 CrossRefGoogle Scholar
  6. Chekli L, Phuntsho S, Tijing LD, Zhou JL, Kim JH, Shon HK (2014) Stability of Fe-oxide nanoparticles coated with natural organic matter under relevant environmental conditions. Water Sci Technol 70(12):2040–2046. doi: 10.2166/wst.2014.454 CrossRefGoogle Scholar
  7. Chen KL, Mylon SE, Elimelech M (2007) Enhanced aggregation of alginate-coated iron oxide (hematite) nanoparticles in the presence of, calcium, strontium and barium cations. Langmuir 23(11):5920–5928. doi: 10.1021/la063744k CrossRefGoogle Scholar
  8. Domingos RF, Tufenkji N, Wilkinson KJ (2009) Aggregation of titanium dioxide nanoparticles: role of a fulvic acid. Environ Sci Technol 43(5):1282–1286. doi: 10.1021/es8023594 CrossRefGoogle Scholar
  9. Dong HR, Lo IMC (2013a) Influence of calcium ions on the colloidal stability of surface-modified nano zero-valent iron in the absence or presence of humic acid. Water Res 47(7):2489–2496. doi: 10.1016/j.watres.2013.02.022 CrossRefGoogle Scholar
  10. Dong HR, Lo IMC (2013b) Influence of humic acid on the colloidal stability of surface-modified nano zero-valent iron. Water Res 47(1):419–427. doi: 10.1016/j.watres.2012.10.013 CrossRefGoogle Scholar
  11. Elimelech M, Gregory J, Jia X, Williams RA (1995) Particle deposition and aggregation: measurement, modeling, and simulation. Butterworth-Heinemann Ltd, OxfordGoogle Scholar
  12. Gastone F, Tosco T, Sethi R (2014) Guar gum solutions for improved delivery of iron particles in porous media (part 1): porous medium rheology and guar gum-induced clogging. J Contam Hydrol 166:23–33. doi: 10.1016/j.jconhyd.2014.06.013 CrossRefGoogle Scholar
  13. Hering JG, Morel FMM (1988) Humic-acid complexation of calcium and copper. Environ Sci Technol 22(10):1234–1237. doi: 10.1021/Es00175a018 CrossRefGoogle Scholar
  14. Holthoff H, Schmitt A, FernandezBarbero A, Borkovec M, CabrerizoVilchez MA, Schurtenberger P, HidalgoAlvarez R (1997) Measurement of absolute coagulation rate constants for colloidal particles: comparison of single and multiparticle light scattering techniques. J Colloid Interface Sci 192(2):463–470. doi: 10.1006/jcis.1997.5022 CrossRefGoogle Scholar
  15. Hoss S, Fritzsche A, Meyer C, Bosch J, Meckenstock RU, Totsche KU (2015) Size- and composition-dependent toxicity of synthetic and soil-derived Fe oxide colloids for the nematode Caenorhabditis elegans. Environ Sci Technol 49(1):544–552. doi: 10.1021/es503559n CrossRefGoogle Scholar
  16. Illes E, Tombacz E (2006) The effect of humic acid adsorption on pH-dependent surface charging and aggregation of magnetite nanoparticles. J Colloid Interface Sci 295(1):115–123. doi: 10.1016/j.jcis.2005.08.003 CrossRefGoogle Scholar
  17. Keller AA, Wang HT, Zhou DX, Lenihan HS, Cherr G, Cardinale BJ, Miller R, Ji ZX (2010) Stability and aggregation of metal oxide nanoparticles in natural aqueous matrices. Environ Sci Technol 44(6):1962–1967. doi: 10.1021/es902987d CrossRefGoogle Scholar
  18. Lee KY, Bosch J, Meckenstock RU (2012) Use of metal-reducing bacteria for bioremediation of soil contaminated with mixed organic and inorganic pollutants. Environ Geochem Hlth 34:135–142. doi: 10.1007/s10653-011-9406-2 CrossRefGoogle Scholar
  19. Lowry GV, Gregory KB, Apte SC, Lead JR (2012) Transformations of nanomaterials in the environment. Environ Sci Technol 46(13):6893–6899. doi: 10.1021/Es300839e CrossRefGoogle Scholar
  20. Luna M, Gastone F, Tosco T, Sethi R, Velimirovic M, Gemoets J, Muyshondt R, Sapion H, Klaas N, Bastiaens L (2015) Pressure-controlled injection of guar gum stabilized microscale zerovalent iron for groundwater remediation. J Contam Hydrol 181:46–58. doi: 10.1016/j.jconhyd.2015.04.007 CrossRefGoogle Scholar
  21. Maroni P, Ruiz-Cabello FJM, Cardoso C, Tiraferri A (2015) Adsorbed mass of polymers on self-assembled mono layers: effect of surface chemistry and polymer charge. Langmuir 31(22):6045–6054. doi: 10.1021/acs.langmuir.5b01103 CrossRefGoogle Scholar
  22. Meckenstock R, Bosch J (2014) Method for the degradation of pollutants in water and/or soil. U.S. Patent 8,921,091 B2, issued December 30, 2014Google Scholar
  23. Petosa AR, Brennan SJ, Rajput F, Tufenkji N (2012) Transport of two metal oxide nanoparticles in saturated granular porous media: role of water chemistry and particle coating. Water Res 46(4):1273–1285. doi: 10.1016/j.watres.2011.12.033 CrossRefGoogle Scholar
  24. Philippe A, Schaumann GE (2014) Interactions of dissolved organic matter with natural and engineered inorganic colloids: a review. Environ Sci Technol 48(16):8946–8962. doi: 10.1021/Es502342r CrossRefGoogle Scholar
  25. Raychoudhury T, Tufenkji N, Ghoshal S (2012) Aggregation and deposition kinetics of carboxymethyl cellulose-modified zero-valent iron nanoparticles in porous media. Water Res 46(6):1735–1744. doi: 10.1016/j.watres.2011.12.045 CrossRefGoogle Scholar
  26. Sander S, Mosley LM, Hunter KA (2004) Investigation of interparticle forces in natural waters: effects of adsorbed humic acids on iron oxide and alumina surface properties. Environ Sci Technol 38(18):4791–4796. doi: 10.1021/es049602z CrossRefGoogle Scholar
  27. Szilagyi I, Trefalt G, Tiraferri A, Maroni P, Borkovec M (2014) Polyelectrolyte adsorption, interparticle forces, and colloidal aggregation. Soft Matter 10:2479–2502. doi: 10.1039/C3SM52132J CrossRefGoogle Scholar
  28. Tiraferri A, Borkovec M (2015) Probing effects of polymer adsorption in colloidal particle suspensions by light scattering as relevant for the aquatic environment: an overview. Sci Total Environ 535:131–140. doi: 10.1016/j.scitotenv.2014.11.063 CrossRefGoogle Scholar
  29. Tobler NB, Hofstetter TB, Straub KL, Fontana D, Schwarzenbach RP (2007) Iron-mediated microbial oxidation and abiotic reduction of organic contaminants under anoxic conditions. Environ Sci Technol 41(22):7765–7772. doi: 10.1021/Es071128k CrossRefGoogle Scholar
  30. Tosco T, Bosch J, Meckenstock RU, Sethi R (2012) Transport of ferrihydrite nanoparticles in saturated porous media: role of ionic strength and flow rate. Environ Sci Technol 46(7):4008–4015. doi: 10.1021/es202643c CrossRefGoogle Scholar
  31. Tosco T, Gastone F, Sethi R (2014) Guar gum solutions for improved delivery of iron particles in porous media (part 2): iron transport tests and modeling in radial geometry. J Contam Hydrol 166:34–51. doi: 10.1016/j.jconhyd.2014.06.014 CrossRefGoogle Scholar
  32. Tosco T, Papini MP, Viggi CC, Sethi R (2014) Nanoscale zerovalent iron particles for groundwater remediation: a review. J Clean Prod 77:10–21. doi: 10.1016/j.jclepro.2013.12.026 CrossRefGoogle Scholar
  33. Velimirovic M, Simons Q, Bastiaens L (2014) Guar gum coupled microscale ZVI for in situ treatment of CAHs: continuous-flow column study. J Hazard Mater 265:20–29. doi: 10.1016/j.jhazmat.2013.11.020 CrossRefGoogle Scholar
  34. Vindedahl AM, Stemig MS, Arnold WA, Penn RL (2016) Character of humic substances as a predictor for goethite nanoparticle reactivity and aggregation. Environ Sci Technol 50(3):1200–1208. doi: 10.1021/acs.est.5b04136 CrossRefGoogle Scholar
  35. Vindedahl AM, Strehlau JH, Arnold WA, Lee Penn R (2016) Organic matter and iron oxide nanoparticles: aggregation, interactions, and reactivity. Environmental Science: Nano 3:494–505. doi: 10.1039/C5EN00215J Google Scholar
  36. Waychunas GA, Kim CS, Banfield JF (2005) Nanoparticulate iron oxide minerals in soils and sediments: unique properties and contaminant scavenging mechanisms. J Nanopart Res 7(4–5):409–433. doi: 10.1007/s11051-005-6931-x CrossRefGoogle Scholar
  37. Xu CY, Deng KY, Li JY, Xu RK (2015) Impact of environmental conditions on aggregation kinetics of hematite and goethite nanoparticles. J Nanopart Res 17(10: 394):1–14. doi: 10.1007/S11051-015-3198-8 Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Alberto Tiraferri
    • 1
  • Laura Andrea Saldarriaga Hernandez
    • 1
  • Carlo Bianco
    • 1
  • Tiziana Tosco
    • 1
  • Rajandrea Sethi
    • 1
  1. 1.Department of Land, Environment, and Infrastructure Engineering (DIATI)Politecnico di TorinoTorinoItaly

Personalised recommendations