Effects of PEGylation on biomimetic synthesis of magnetoferritin nanoparticles

  • Caiyun Yang
  • Changqian Cao
  • Yao Cai
  • Huangtao Xu
  • Tongwei Zhang
  • Yongxin Pan
Research Paper


Recent studies have demonstrated that ferrimagnetic magnetoferritin nanoparticles are a promising novel magnetic nanomaterial in biomedical applications, including biocatalysis, imaging, diagnostics, and tumor therapy. Here we investigated the PEGylation of human H-ferritin (HFn) proteins and the possible influence on biomimetic synthesis of magnetoferritin nanoparticles. The outer surface of HFn proteins was chemically modified with different PEG molecular weights (PEG10K and PEG20K) and different modification ratios (HFn subunit:PEG20K = 1:1, 1:2, 1:4). The PEGylated HFn proteins were used for biomimetic synthesis of ferrimagnetic magnetoferritin nanoparticles. We found that, compared with magnetoferritin using non-PEGylated HFn protein templates, the synthesized magnetoferritin using the PEGylated HFn protein templates possessed larger magnetite cores, higher magnetization and relaxivity values, and improved thermal stability. These results suggest that the PEGylation of H-ferritin may improve the biomineralization of magnetoferritin nanoparticles and enhance their biomedical applications.


Ferritin PEGylation Biomimetic synthesis Magnetic nanoparticles Biomedical applications 



We thank colleagues Naigui Liu at NMR sub-laboratory for help in the relaxivity experiment, Xu Tang and Lixin Gu at Transmission Electron Microscopy Laboratory for their help in TEM experiments, and Greig A. Paterson for language editing. This work was supported by grants of the National Natural Science Foundation of China (41621004, 41330104, and 41574062) and the Frontier Science Program of Chinese Academy of Sciences.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Aime S, Botta M, Terreno E (2005) Gd(III)-based contrast agents for MRI. Adv Inorg Chem 57:173–237. doi: 10.1016/S0898-8838(05)57004-1 CrossRefGoogle Scholar
  2. Bulte JWM, Kraitchman DL (2004) Iron oxide MR contrast agents for molecular and cellular imaging. NMR Biomed 17:484–499. doi: 10.1002/nbm.924 CrossRefGoogle Scholar
  3. Burda C, Chen XB, Narayanan R, El-Sayed MA (2005) Chemistry and properties of nanocrystals of different shapes. Chem Rev 105:1025–1102. doi: 10.1021/cr030063a CrossRefGoogle Scholar
  4. Burtea C, Laurent S, Roch A, Elst LV, Muller RN (2005) C-MALISA (cellular magnetic-linked immunosorbent assay), a new application of cellular ELISA for MRI. J Inorg Biochem 99(5):1135–1144. doi: 10.1016/j.jinorgbio.2005.02.009 CrossRefGoogle Scholar
  5. Cai Y, Cao CQ, He XQ, Yang CY, Tian LX, Zhu RX, Pan YX (2015) Enhanced magnetic resonance imaging and staining of cancer cells using ferrimagnetic H-ferritin nanoparticles with increasing core size. Int J Nanomedicine 10:2619–2634. doi: 10.2147/Ijn.S80025 Google Scholar
  6. Cao CQ, Tian LX, Liu QS, Liu WF, Chen GJ, Pan YX (2010) Magnetic characterization of noninteracting, randomly oriented, nanometer-scale ferrimagnetic particles. J Geophys Res-Sol Ea 115. doi: 10.1029/2009jb006855
  7. Cao CQ, Wang XX, Cai Y, Sun L, Tian LX, Wu H, He XQ, Lei H, Liu WF, Chen GJ, Zhu RX, Pan YX (2014) Targeted in vivo imaging of microscopic tumors with ferritin-based nanoprobes across biological barriers. Adv Mater 26:2566–2571. doi: 10.1002/adma.201304544 CrossRefGoogle Scholar
  8. Castellanos IJ, Crespo R, Griebenow K (2003) Poly(ethylene glycol) as stabilizer and emulsifying agent: a novel stabilization approach preventing aggregation and inactivation of proteins upon encapsulation in bioerodible polyester microspheres. J Control Release 88:135–145. doi: 10.1016/S0168-3659(02)00488-1 CrossRefGoogle Scholar
  9. Cisowski S (1981) Interacting vs non-interacting single domain behavior in natural and synthetic samples. Phys Earth Planet Inter 26:56–62. doi: 10.1016/0031-9201(81)90097-2 CrossRefGoogle Scholar
  10. Delgado C, Francis GE, Fisher D (1992) The uses and properties of PEG-linked proteins. Crit Rev Ther Drug Carrier Syst 9:249–304Google Scholar
  11. Ding HL, Zhang YX, Wang S, Xu JM, Xu SC, Li GH (2012) Fe3O4@SiO2 core/shell nanoparticles: the silica coating regulations with a single core for different core sizes and shell thicknesses. Chem Mater 24:4572–4580. doi: 10.1021/cm302828d CrossRefGoogle Scholar
  12. Douglas T, Dickson DPE, Betteridge S, Charnock J, Garner CD, Mann S (1995) Synthesis and structure of an iron(iii) sulfide-ferritin bioinorganic nanocomposite. Science 269:54–57. doi: 10.1126/science.269.5220.54 CrossRefGoogle Scholar
  13. Dreaden EC, Alkilany AM, Huang XH, Murphy CJ, El-Sayed MA (2012) The golden age: gold nanoparticles for biomedicine. Chem Soc Rev 41:2740–2779. doi: 10.1039/c1cs15237h CrossRefGoogle Scholar
  14. Falvo E, Tremante E, Fraioli R et al (2013) Antibody-drug conjugates: targeting melanoma with cisplatin encapsulated in protein-cage nanoparticles based on human ferritin. Nanoscale 5:12278–12285. doi: 10.1039/c3nr04268e CrossRefGoogle Scholar
  15. Fan J, Lu J, Xu R, Jiang R, Gao Y (2003) Use of water-dispersible Fe2O3 nanoparticles with narrow size distributions in isolating avidin. J Colloid Interface Sci 266(1):215–218. doi: 10.1016/S0021-9797(03)00570-8 CrossRefGoogle Scholar
  16. Fan K, Cao C, Pan Y et al (2012) Magnetoferritin nanoparticles for targeting and visualizing tumour tissues. Nat Nanotechnol 7:459–464. doi: 10.1038/nnano.2012.90 CrossRefGoogle Scholar
  17. Fantechi E, Innocenti C, Zanardelli M et al (2014) A smart platform for hyperthermia application in cancer treatment: cobalt-doped ferrite nanoparticles mineralized in human ferritin cages. ACS Nano 8:4705–4719. doi: 10.1021/nn500454n CrossRefGoogle Scholar
  18. Fee CJ, Van Alstine JM (2004) Prediction of the viscosity radius and the size exclusion chromatography behavior of PEGylated proteins. Bioconjug Chem 15:1304–1313. doi: 10.1021/bc049843w CrossRefGoogle Scholar
  19. Gaertner HF, Puigserver AJ (1992) Increased activity and stability of poly(ethylene glycol)-modified trypsin enzyme. Microb Tech 14:150–155. doi: 10.1016/0141-0229(92)90174-M CrossRefGoogle Scholar
  20. Gao JH, Gu HW, Xu B (2009) Multifunctional magnetic nanoparticles: design, synthesis, and biomedical applications. Accounts Chem Res 42:1097–1107. doi: 10.1021/ar9000026 CrossRefGoogle Scholar
  21. Garcia-Arellano H, Valderrama B, Saab-Rincon G, Vazquez-Duhalt R (2002) High temperature biocatalysis by chemically modified cytochrome c. Bioconjug Chem 13:1336–1344. doi: 10.1021/bc025561p CrossRefGoogle Scholar
  22. Harris JM, Chess RB (2003) Effect of pegylation on pharmaceuticals. Nat Rev Drug Discov 2:214–221. doi: 10.1038/nrd1033 CrossRefGoogle Scholar
  23. Harrison PM, Arosio P (1996) The ferritins: molecular properties, iron storage function and cellular regulation. Biochim Biophys Acta 1275:161–203. doi: 10.1016/0005-2728(96)00022-9 CrossRefGoogle Scholar
  24. Harrison PM, Fischbac FA, Hoy TG, Haggis GH (1967) Ferric oxyhydroxide core of ferritin. Nature 216:1188–1190. doi: 10.1038/2161188a0 CrossRefGoogle Scholar
  25. Hinds KD, Kim SW (2002) Effects of PEG conjugation on insulin properties. Adv Drug Deliver Rev 54:505–530. doi: 10.1016/S0169-409x(02)00025-X CrossRefGoogle Scholar
  26. Kinstler OB, Brems DN, Lauren SL, Paige AG, Hamburger JB, Treuheit MJ (1996) Characterization and stability of N-terminally PEGylated rhG-CSF. Pharmaceut Res 13:996–1002. doi: 10.1023/A:1016042220817 CrossRefGoogle Scholar
  27. Koenig SH, Kellar KE (1995) Theory of 1/T1 and 1/T2 NMRD profiles of solutions of magnetic nanoparticles. Magn Reson Med 34:227–233. doi: 10.1002/mrm.1910340214 CrossRefGoogle Scholar
  28. Kohler N, Sun C, Fichtenholtz A (2006) Methotrexate-immobilized poly (ethylene glycol) magnetic nanoparticles for MR imaging and drug delivery. Small 2(6):785–792. doi: 10.1002/smll.200600009 CrossRefGoogle Scholar
  29. Kramer RM, Li C, Carter DC, Stone MO, Naik RR (2004) Engineered protein cages for nanomaterial synthesis. J Am Chem Soc 126:13282–13286. doi: 10.1021/ja046735b CrossRefGoogle Scholar
  30. Kurfurst MM (1992) Detection and molecular-weight determination of polyethylene glycol-modified hirudin by staining after sodium dodecyl-sulfate polyacrylamide-gel electrophoresis. Anal Biochem 200:244–248. doi: 10.1016/0003-2697(92)90460-O CrossRefGoogle Scholar
  31. Laurent S, Forge D, Port M, Roch A, Robic C, Elst LV, Muller RN (2010) Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev 110:2574–2574. doi: 10.1021/cr900197g CrossRefGoogle Scholar
  32. Lu YL, Harding SE, Turner A et al (2008) Effect of PEGylation on the solution conformation of antibody fragments. J Pharm Sci-US 97:2062–2079. doi: 10.1002/jps.21170 CrossRefGoogle Scholar
  33. Mann S, Meldrum FC (1991) Controlled synthesis of inorganic materials using supramolecular assemblies. Adv Mater 3:316–318. doi: 10.1002/adma.19910030611 CrossRefGoogle Scholar
  34. Mann S, Archibald DD, Didymus JM, Douglas T, Heywood BR, Meldrum FC, Reeves NJ (1993) Crystallization at inorganic-organic interfaces-biominerals and biomimetic synthesis. Science 261:1286–1292. doi: 10.1126/science.261.5126.1286 CrossRefGoogle Scholar
  35. Matsumura S, Aoki I, Saga T, Shiba K (2011) A tumor-environment-responsive nanocarrier that evolves its surface properties upon sensing matrix metalloproteinase-2 and initiates agglomeration to enhance T2 relaxivity for magnetic resonance imaging. Mol Pharmaceut 8:1970–1974. doi: 10.1021/mp2001999 CrossRefGoogle Scholar
  36. Meldrum FC, Heywood BR, Mann S (1992) Magnetoferritin: in vitro synthesis of a novel magnetic protein. Science 257:522–523. doi: 10.1126/science.1636086 CrossRefGoogle Scholar
  37. Melnikova L, Pospiskova K, Mitroova Z, Kopcansky P, Safarik I (2014) Peroxidase-like activity of magnetoferritin. Microchim Acta 181:295–301. doi: 10.1007/s00604-013-1105-5 CrossRefGoogle Scholar
  38. Pankhurst Q, Jones S, Dobson J (2016) Applications of magnetic nanoparticles in biomedicine: the story so far. J Phys D Appl Phys 49(50):501002–501003. doi: 10.1088/0022-3727/49/50/501002
  39. Readman PW, O'reilly W (1972) Magnetic properties of oxidized (cation-deficient) titanomagnetites (Fe, Ti, □)3O4. J Geomag Geoelectr 24(1):69–90. doi: 10.5636/jgg.24.69 CrossRefGoogle Scholar
  40. Roberts MJ, Bentley MD, Harris JM (2002) Chemistry for peptide and protein PEGylation. Adv Drug Deliv Rev 54:459–476. doi: 10.1016/j.addr.2012.09.025 CrossRefGoogle Scholar
  41. Rodriguez-Martinez JA, Rivera-Rivera I, Sola RJ, Griebenow K (2009) Enzymatic activity and thermal stability of PEG-alpha-chymotrypsin conjugates. Biotechnol Lett 31:883–887. doi: 10.1007/s10529-009-9947-y CrossRefGoogle Scholar
  42. Theil EC (1987) Ferritin-structure, gene-regulation, and cellular function in animals, plants, and microorganisms. Annu Rev Biochem 56:289–315. doi: 10.1146/annurev.biochem.56.1.289 CrossRefGoogle Scholar
  43. Treethammathurot B, Ovartlarnporn C, Wungsintaweekul J, Duncan R, Wiwattanapatapee R (2008) Effect of PEG molecular weight and linking chemistry on the biological activity and thermal stability of PEGylated trypsin. Int J Pharmaceut 357:252–259. doi: 10.1016/j.ijpharm.2008.01.016 CrossRefGoogle Scholar
  44. Tromsdorf UI, Bruns OT, Salmen SC, Beisiegel U, Weller H (2009) A highly effective, nontoxic T-1 MR contrast agent based on ultrasmall PEGylated iron oxide nanoparticles. Nano Lett 9:4434–4440. doi: 10.1021/nl902715v CrossRefGoogle Scholar
  45. Tsukamoto R, Muraoka M, Fukushige Y, Nakagawa H, Kawaguchi T, Nakatsuji Y, Yamashita I (2008) Improvement of Co3O4 nanoparticle synthesis in apoferritin cavity by outer surface pegylation. B Chem Soc Jpn 81:1669–1674. doi: 10.1246/bcsj.81.1669 CrossRefGoogle Scholar
  46. Uchida M, Flenniken ML, Allen M et al (2006) Targeting of cancer cells with ferrimagnetic ferritin cage nanoparticles. J Am Chem Soc 128:16626–16633. doi: 10.1021/ja0655690 CrossRefGoogle Scholar
  47. Uchida M, Terashima M, Cunningham CH et al (2008) A human ferritin iron oxide nano-composite magnetic resonance contrast agent. Magn Reson Med 60:1073–1081. doi: 10.1002/mrm.21761 CrossRefGoogle Scholar
  48. Uchio T, Baudys M, Liu F, Song SC, Kim SW (1999) Site-specific insulin conjugates with enhanced stability and extended action profile. Adv Drug Deliver Rev 35:289–306. doi: 10.1016/S0169-409x(98)00078-7 CrossRefGoogle Scholar
  49. Vannucci L, Falvo E, Fornara M et al (2012) Selective targeting of melanoma by PEG-masked protein-based multifunctional nanoparticles. Int J Nanomedicine 7:1489–1509. doi: 10.2147/Ijn.S28242 Google Scholar
  50. Veronese FM (2001) Peptide and protein PEGylation: a review of problems and solutions. Biomaterials 22:405–417. doi: 10.1016/S0142-9612(00)00193-9 CrossRefGoogle Scholar
  51. Walls MG, Cao CQ, Kui YZ, Li JH, Che RC, Pan YX (2013) Identification of ferrous-ferric Fe3O4 nanoparticles in recombinant human ferritin cages. Microsc Microanal 19:835–841. doi: 10.1017/S1431927613001724 CrossRefGoogle Scholar
  52. Wynn TT, Gumuscu B (2016) Potential role of a new PEGylated recombinant factor VIII for hemophilia a. Journal of blood medicine 7:121–128. doi: 10.2147/JBM.S82457 CrossRefGoogle Scholar
  53. Yamashita I, Hayashi J, Hara M (2004) Bio-template synthesis of uniform CdSe nanoparticles using cage-shaped protein, apoferritin. Chem Lett 33:1158–1159. doi: 10.1246/Cl.2004.1158 CrossRefGoogle Scholar
  54. Yu XG, Marks TJ, Facchetti A (2016) Metal oxides for optoelectronic applications. Nat Mater 15:383–396. doi: 10.1038/NMAT4599 CrossRefGoogle Scholar
  55. Zhang ZD, He ZM, Guan GQ (1999) Thermal stability and thermodynamic analysis of native and methoxypolyethylene glycol modified trypsin. Biotechnol Tech 13:781–786. doi: 10.1023/A:1008900804320 CrossRefGoogle Scholar
  56. Zhang T, Cao C, Tang X, Cai Y, Yang C, Pan Y (2017) Enhanced peroxidase activity and tumour tissue visualization by cobalt-doped magnetoferritin nanoparticles. Nanotechnology 28:045704. doi: 10.1088/1361-6528/28/4/045704 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Caiyun Yang
    • 1
    • 2
    • 3
  • Changqian Cao
    • 1
    • 2
  • Yao Cai
    • 1
    • 2
  • Huangtao Xu
    • 1
    • 2
    • 3
  • Tongwei Zhang
    • 1
    • 2
  • Yongxin Pan
    • 1
    • 2
  1. 1.Key Laboratory of Earth and Planetary PhysicsInstitute of Geology and Geophysics, Chinese Academy of SciencesBeijingPeople’s Republic of China
  2. 2.France-China Bio-Mineralization and Nano-Structures LaboratoryChinese Academy of SciencesBeijingPeople’s Republic of China
  3. 3.University of Chinese Academy of SciencesBeijingPeople’s Republic of China

Personalised recommendations