Calcium-assisted reduction of cobalt ferrite nanoparticles for nanostructured iron cobalt with enhanced magnetic performance

Research Paper
  • 178 Downloads

Abstract

This paper demonstrates the potential of a calcium-assisted reduction process for synthesizing fine-grain (~100 nm) metal alloys from metal oxide nanoparticles. To demonstrate the process, an iron cobalt alloy (Fe66Co34) is obtained by hydrogen annealing 7-nm cobalt ferrite (CoFe2O4) nanoparticles in the presence of calcium granules. The calcium serves as a strong reducing agent, promoting the phase transition from cobalt ferrite to a metallic iron cobalt alloy, while maintaining high crystallinity. Magnetic measurements demonstrate the annealing temperature is the dominant factor of tuning the grain size and magnetic properties. Annealing at 700 °C for 1 h maximizes the magnetic saturation, up to 2.4 T (235 emu/g), which matches that of bulk iron cobalt.

Keywords

Magnetic nanomaterials Iron cobalt Calcium-assisted reduction High saturation Grain evolution 

Notes

Acknowledgements

This work was supported in part by the US Army Research Office (W911NF-09-1-0511) and National Science Foundation (CMMI-1451993). The authors thank Stefan Kelly for assistance in the DLS measurements, Lorena Maldonado-Camargo and Dr. Carlos Rinaldi for making the FC/ZFC measurements, and the UF MAIC facility for the invaluable support in material characterization.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11051_2017_3797_MOESM1_ESM.docx (14 kb)
ESM 1(DOCX 13 kb)

References

  1. Chinnasamy C, Herr J, Pai R, Cui B, Li W, Liu JF (2012) Gram scale synthesis of high magnetic moment Fe100−xCox alloy nanoparticles: reaction mechanism, structural and magnetic properties and its application on nanocomposite. J Appl Phys 111:07B539CrossRefGoogle Scholar
  2. Coey JMD (2010) Magnetism and magnetic materials. Cambridge University Press, Cambridge, p 386Google Scholar
  3. Desvaux C, Lecante P, Respaud M, Chaudret B (2010) Structural and magnetic study of the annealing of Fe-Co nanoparticles. J Mater Chem 20:103–109CrossRefGoogle Scholar
  4. Ennas G, Falqui A, Marras S, Sangregorio C, Marongiu G (2004) Influence of metal content on size, dispersion, and magnetic properties of iron-cobalt alloy nanoparticles embedded in silica matrix. Chem Mater 16:5659–5663CrossRefGoogle Scholar
  5. Kim J, Chung SE, Choi S-E, Lee H, Kim J, Kwon S (2011) Programming magnetic anisotropy in polymeric microactuators. Nat Mater 10:747–752CrossRefGoogle Scholar
  6. Levy M, Quarta A, Espinosa A, Figuerola A, Wilhelm C, García-Hernández M, Genovese A, Falqui A, Alloyeau D, Buonsanti R, Cozzoli PD, García MA, Gazeau F, Pellegrino T (2011) Correlating magneto-structural properties to hyperthermia performance of highly monodisperse iron oxide nanoparticles prepared by a seeded-growth route. Chem Mater 23:4170–4180CrossRefGoogle Scholar
  7. Pankhurst QA, Connolly J, Jones SK, Dobson JJ (2003) Applications of magnetic nanoparticles in biomedicine. J Phys D Appl Phys 36(13):R167CrossRefGoogle Scholar
  8. Park J, An K, Hwang Y, Park J-G, Noh H-J, Kim J-Y, Park J-H, Hwang N-M, Hyeon T (2004) Ultra-large-scale syntheses of monodisperse nanocrystals. Nat Mater 3:891–895CrossRefGoogle Scholar
  9. Popova AN (2012) Synthesis and characterization of iron-cobalt nanoparticles. J Physics: Conf Series 345:012030Google Scholar
  10. Poudyal N, Chaubey GS, Rong C-B, Cui J, Ping Liu J (2013) Synthesis of monodisperse FeCo nanoparticles by reductive salt-matrix annealing. Nanotechnology 24:345605CrossRefGoogle Scholar
  11. Qu S, Wang J, Kong J, Yang P, Chen G (2007) Magnetic loading of carbon nanotube/nano-Fe3O4 composite for electrochemical sensing. Talanta 71:1096–1102CrossRefGoogle Scholar
  12. Sun S, Zeng H (2002) Size-controlled synthesis of magnetite nanoparticles. J Amer Chem Soc 124:8204–8205CrossRefGoogle Scholar
  13. Terris B, Thomson T (2005) Nanofabricated and self-assembled magnetic structures as data storage media. J Phys D Appl Phys 38:R199CrossRefGoogle Scholar
  14. van Schooneveld MM, Campos-Cuerva C, Pet J, Meeldijk JD, van Rijssel J, Meijerink A, Erné BH, de Groot FM (2012) Composition tunable cobalt–nickel and cobalt–iron alloy nanoparticles below 10 nm synthesized using acetonated cobalt carbonyl. J Nanopart Res 14:1–13Google Scholar
  15. Wang C, Peng S, Lacroix L-M, Sun S (2009) Synthesis of high magnetic moment CoFe nanoparticles via interfacial diffusion in core/shell structured Co/Fe nanoparticles. Nano Res 2:380–385CrossRefGoogle Scholar
  16. Zeng H, Sun S (2008) Syntheses, properties, and potential applications of multicomponent magnetic nanoparticles. Adv Func Mater 18:391–400CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.Interdisciplinary Microsystems Group, Department of Electrical and Computer EngineeringUniversity of FloridaGainesvilleUSA
  2. 2.Department of Materials Science and EngineeringUniversity of FloridaGainesvilleUSA

Personalised recommendations