Magnetron-sputtered La0.6Sr0.4Co0.2Fe0.8O3 nanocomposite interlayer for solid oxide fuel cells

  • A. A. Solovyev
  • I. V. Ionov
  • A. V. Shipilova
  • A. N. Kovalchuk
  • M. S. Syrtanov
Research Paper

Abstract

A thin layer of a La0.6Sr0.4Co0.2Fe0.8O3 (LSCF) is deposited between the electrolyte and the La0.6Sr0.4Co0.2Fe0.8O3/Ce0.9Gd0.1O2 (LSCF/CGO) cathode layer of a solid oxide fuel cell (SOFC) by pulsed magnetron sputtering using an oxide target of LSCF. The films were completely dense and well adherent to the substrate. The effects of annealing in temperature range from 200 to 1000 °C on the crystalline structure of the LSCF films have been studied. The films of nominal thickness, 250–500 nm, are crystalline when annealed at temperatures above 600 °C. The crystalline structure, surface topology, and morphology of the films were determined using X-ray diffraction (XRD), atomic force microscopy (AFM), and scanning electron microscopy (SEM), respectively. To study the electrochemical characteristics of the deposited-film, solid oxide fuel cells using 325-nm LSCF films as interlayer between the electrolyte and the cathode have been fabricated. The LSCF interlayer improves the overall performance of the SOFC by increasing the interfacial area between the electrolyte and cathode. The electrolyte-supported cells with the interlayer have 30% greater, overall power output compared to that achieved with the cells without interlayer. The LSCF interlayer could also act as a transition layer that improves adhesion and relieves both thermal stress and lattice strain between the cathode and the electrolyte. Our results demonstrate that pulsed magnetron sputtering provides a low-temperature synthesis route for realizing ultrathin nanocrystalline LSCF film layers for intermediate- or low-temperature solid oxide fuel cells.

Keywords

(La,Sr)(Co,Fe)O3 Magnetron sputtering Nanocomposite Interlayer Solid oxide fuel cells Nanostructured thin films Energy conversion 

Notes

Acknowledgements

The authors gratefully acknowledge the Russian Foundation for Basic Research (grant no. 14-29-04089) for the financial support. The work is done at the expense of subsidies in the framework of the program to improve the competitiveness of TPU. This research was also carried out within the State assignment of the Institute of High Current Electronics SB RAS.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Bieberle-Hütter A, Tuller HL (2006) Fabrication and structural characterization of interdigitated thin film La1−xSrxCoO3(LSCO) electrodes. J Electroceram 16:151–157. doi: 10.1007/s10832-006-5945-9 CrossRefGoogle Scholar
  2. Dong J, Zhang Y, Zhang X, Liu Q, Wang J (2014) Improved magnetic properties of SrFe12O19/FeCo core-shell nanofibers by hard/soft magnetic exchange-coupling effect. Mater Lett 120:9–12. doi: 10.1016/j.matlet.2014.01.022 CrossRefGoogle Scholar
  3. Dusastre V, Kilner JA (1999) Optimisation of composite cathodes for intermediate temperature SOFC applications. Solid State Ionics 126:163–174. doi: 10.1016/S0167-2738(99)00108-3 CrossRefGoogle Scholar
  4. Fleig J (2003) Solid oxide fuel cell cathodes: polarization mechanisms and modeling of the electrochemical performance. Annu Rev Mater Res 33:361–382. doi: 10.1146/annurev.matsci.33.022802.093258 CrossRefGoogle Scholar
  5. Fukui T, Ohara S, Naito M, Nogi K (2001) Morphology control of the electrode for solid oxide fuel cells by using nanoparticles. J Nanopart Res 3(2):171–174. doi: 10.1023/A:1017953228854 CrossRefGoogle Scholar
  6. Garcia-Garcia FJ, Yubero F, González-Elipe AR, Balomenou SP, Tsiplakides D, Petrakopoulou I, Lambert RM (2015) Porous, robust highly conducting Ni-YSZ thin film anodes prepared by magnetron sputtering at oblique angles for application as anodes and buffer layers in solid oxide fuel cells. Int J Hydrog Energy 40(23):7382–7387. doi: 10.1016/j.ijhydene.2015.04.001 CrossRefGoogle Scholar
  7. Grunbaum N, Dessemond L, Fouletier J et al (2006) Electrode reaction of Sr1-xLaxCo0.8Fe0.2 O3−δ with x = 0.1 and 0.6 on Ce0.9Gd0.1O1.95 at 600 ≤ T ≤ 800 °C. Solid State Ionics 177:907–913. doi: 10.1016/j.ssi.2006.02.009 CrossRefGoogle Scholar
  8. Hadjiev VG, Iliev MN, Vergilov IV (1988) The Raman-spectra of Co3О4. J Phys C Solid State Phys 21(7):L199–L201. doi: 10.1088/0022-3719/21/7/007 CrossRefGoogle Scholar
  9. Jamale AP, Shanmugam S, Bhosale CH, Jadhav LD (2015) Physiochemical properties of combustion synthesized La0.6Sr0.4Co0.8Fe0.2O3 perovskite: a role of fuel to oxidant ratio. Mater Sci Semicond Process 40:855–860. doi: 10.1016/j.mssp.2015.07.091 CrossRefGoogle Scholar
  10. Lai BK, Johnson AC, Xiong H, Ramanathan S (2009) Ultra-thin nanocrystalline lanthanum strontium cobalt ferrite (La0.6Sr0.4Co0.8Fe0.2O3–δ) films synthesis by RF-sputtering and temperature-dependent conductivity studies. J Power Sources 186:115–122. doi: 10.1016/j.jpowsour.2008.09.094 CrossRefGoogle Scholar
  11. Lee JW, Liu Z, Yang L et al (2009) Preparation of dense and uniform La0.6Sr0.4Co0.2Fe0.8O3−δ (LSCF) films for fundamental studies of SOFC cathodes. J Power Sources 190:307–310. doi: 10.1016/j.jpowsour.2009.01.090 CrossRefGoogle Scholar
  12. Liu M, Ding D, Blinn K, Li X, Nie L, Liu M (2012) Enhanced performance of LSCF cathode through surface modification. Int J Hydrog Energy 37:8613–8620. doi: 10.1016/j.ijhydene.2012.02.139 CrossRefGoogle Scholar
  13. Murray EP, Sever MJ, Barnett SA (2002) Electrochemical performance of (La,Sr)(Co,Fe)O3-(Ce,Gd)O3 composite cathodes. Solid State Ionics 148:27–34. doi: 10.1016/S0167-2738(02)00102-9 CrossRefGoogle Scholar
  14. Petric A, Huang P, Tietz F (2000) Evaluation of La–Sr–Co–Fe–O perovskites for solid oxide fuel cells and gas separation membranes. Solid State Ionics 135:719–725. doi: 10.1016/S0167-2738(00)00394-5 CrossRefGoogle Scholar
  15. Prestat M, Koenig J-F, Gauckler LJ (2007) Oxygen reduction at thin dense La0.52Sr0.48Co0.18Fe0.82O3–δ electrodes. J Electroceramics 18:87–101. doi: 10.1007/s10832-007-9012-y CrossRefGoogle Scholar
  16. Simrick NJ, Kilner JA, Atkinson A et al (2011) Micro-fabrication of patterned LSCF thin-film cathodes with gold current collectors. Solid State Ionics 192:619–626. doi: 10.1016/j.ssi.2010.03.025 CrossRefGoogle Scholar
  17. Solovyev AA, Sochugov NS, Rabotkin SV et al (2014) Application of PVD methods to solid oxide fuel cells. Appl Surf Sci 310:272–277. doi: 10.1016/j.apsusc.2014.03.163 CrossRefGoogle Scholar
  18. Sønderby S, Aijaz A, Helmersson U et al (2014) Deposition of yttria-stabilized zirconia thin films by high power impulse magnetron sputtering and pulsed magnetron sputtering. Surf Coatings Technol 240:1–6. doi: 10.1016/j.surfcoat.2013.12.001 CrossRefGoogle Scholar
  19. Steele B, Bae JM (1998) Properties of La0.6Sr0.4Co0.2Fe0.8O3−x (LSCF) double layer cathodes on gadolinium-doped cerium oxide (CGO) electrolytes II. Role of oxygen exchange and diffusion. Solid State Ionics 106:255–261. doi: 10.1016/S0167-2738(97)00430-X CrossRefGoogle Scholar
  20. Wang WG, Mogensen M (2005) High-performance lanthanum-ferrite-based cathode for SOFC. Solid State Ionics 176:457–462. doi: 10.1016/j.ssi.2004.09.007 CrossRefGoogle Scholar
  21. Yoon J, Cho S, Kim JH, Lee JH, Bi Z, Serquis A, Zhang X, Manthiram A, Wang H (2009) Vertically aligned nanocomposite thin films as a cathode/electrolyte interface layer for thin-film solid oxide fuel cells. Adv Funct Mater 19:3868–3873. doi: 10.1002/adfm.200901338 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • A. A. Solovyev
    • 1
    • 2
  • I. V. Ionov
    • 1
    • 2
  • A. V. Shipilova
    • 1
    • 2
  • A. N. Kovalchuk
    • 1
    • 2
  • M. S. Syrtanov
    • 1
  1. 1.Tomsk Polytechnic UniversityTomskRussia
  2. 2.Institute of High Current ElectronicsTomskRussia

Personalised recommendations