Skip to main content

Large-scale synthesis of monodisperse SiC nanoparticles with adjustable size, stoichiometric ratio and properties by fluidized bed chemical vapor deposition

Abstract

A facile fluidized bed chemical vapor deposition method was proposed for the synthesis of monodisperse SiC nanoparticles by using the single precursor of hexamethyldisilane (HMDS). SiC nanoparticles with average particle size from 10 to 200 nm were obtained by controlling the temperature and the gas ratio. An experimental chemical vapor deposition phase diagram of SiC in the HMDS-Ar-H2 system was obtained and three regions of SiC-Si, SiC and SiC-C can be distinguished. The BET surface area and the photoluminescence properties of the SiC nanoparticles can be adjusted by changing the nanoparticle size. For the SiC nanospheres with free carbon, a novel hierarchical structure with 5 ~ 8 nm SiC nanoparticles embedded into the graphite matrix was obtained. The advantages of fluidized bed technology for the preparation of SiC nanoparticles were proposed based on the features of homogenous reaction zone, narrow temperature distribution, ultra-short reactant residence time and mass production.

Stoichiometric SiC nanoparticles with a diameter of 10 ~ 200 nm can be synthesized in mass production scale by a facile fluidized bed chemical vapor deposition method. An experimental chemical vapor deposition phase diagram of SiC in HMDS-Ar-H2 system was obtained under a different temperature and gas atmosphere and three regions of SiC-Si, SiC and SiC-C can be distinguished. BET surface area and photoluminescence properties of SiC nanoparticles can be adjusted based on different-size nanoparticles obtained. Novel hierarchical structure with 5 ~ 8 nm SiC nanoparticles embedded into the graphite matrix was obtained.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  • Casady JB, Johnson RW (1996) Status of silicon carbide (SiC) as a wide-bandgap semiconductor for high-temperature applications: a review. Solid State Electron 39:1409–1422

    Article  Google Scholar 

  • Dasog M, Smith LF, Purkait TK, Veinot JGC (2013) Low temperature synthesis of silicon carbide nanomaterials using a solid-state method. Chem Commun 49:7004–7006

    Article  Google Scholar 

  • Fan JY, Li HX, Iiang J, So LKY, Lam YW, Chu PK (2008) 3C–SiC nanocrystals as fluorescent biological labels. Small 4:1058–1062

    Article  Google Scholar 

  • Fan JY, Wu XL, Chu PK (2006a) Low-dimensional SiC nanostructures: fabrication, luminescence, and electrical properties progress in materials. Science 51:983–1031

    Google Scholar 

  • Fan JY, Wu XL, Li HX, Liu HW, Siu GG, Chu PK (2006b) Luminescence from colloidal 3C-SiC nanocrystals in different solvents. Appl Phys Lett 88:041909

    Article  Google Scholar 

  • Fouad OA (2012) Thermochemical vapor growth of beta-SiC nanospheres. J Nanosci Nanotechnol 12:7148–7154

    Article  Google Scholar 

  • Gupta A, Ghosh T, Jacob C (2007) The influence of diluent gas composition and temperature on SiC nanopowder formation by CVD. J Mater Sci 42:5142–5146

    Article  Google Scholar 

  • Henderson EJ, Veinot JGC (2009) From phenylsiloxane polymer composition to size-controlled silicon carbide nanocrystals. J Am Chem Soc 131:809–815

    Article  Google Scholar 

  • Huisken F, Kohn B, Alexandrescu R, Cojocaru S, Crunteanu A, Ledoux G, Reynaud C (1999) Silicon carbide nanoparticles produced by CO(2) laser pyrolysis of SiH(4)/C(2)H(2) gas mixtures in a flow reactor. J Nanopart Res 1:293–303

    Article  Google Scholar 

  • Ju ZC, Xing Z, Guo CL, Yang LS, Xu LQ, Qian YT (2008) Sulfur-assisted approach for the low-temperature synthesis of beta-SiC nanowires. Eur J Inorg Chem:3883–3888

  • Kim M, Oh I, Kim J (2015) Superior electric double layer capacitors using micro- and mesoporous silicon carbide sphere. J Mater Chem A 3:3944–3951

    Article  Google Scholar 

  • Krstic VD (1992) Production of fine, high-purity beta silicon-carbide powders. J Am Ceram Soc 75:170–174

    Article  Google Scholar 

  • Lee HS, Lee JJ, Chang TS, Kim JW, Koo SM (2007) Hydrothermal synthesis for large barium titanate powders at a low temperature: effect of titania aging in an alkaline solution. J Am Ceram Soc 90:2995–2997

    Article  Google Scholar 

  • Lin HF, Gerbec JA, Sushchikh M, McFarland EW (2008) Synthesis of amorphous silicon carbide nanoparticles in a low temperature low pressure plasma reactor. Nanotechnology 19:325601

    Article  Google Scholar 

  • Liu RZ, Liu ML, Chang JX, Shao YL, Liu B (2015) Preparation of highly flexible SiC nanowires by fluidized bed. Chem Vap Depos 21:196–203

    Article  Google Scholar 

  • Liu RZ, Zhao YJ, Zhou HP (2014) A general approach to monodisperse perovskite microspheres. Adv Powder Technol 25:780–786

    Article  Google Scholar 

  • Lopez-Honorato E, Tan J, Meadows PJ, Marsh G, Xiao P (2009) TRISO coated fuel particles with enhanced SiC properties. J Nucl Mater 392:219–224

    Article  Google Scholar 

  • Lu AH, Schmidt W, Kiefer W, Schuth F (2005) High surface area mesoporous SiC synthesized via nanocasting and carbothermal reduction process. J Mater Sci 40:5091–5093

    Article  Google Scholar 

  • Miettinen M et al (2011) Atmospheric pressure chemical vapour synthesis of silicon–carbon nanoceramics from hexamethyldisilane in high temperature aerosol reactor. J Nanopart Res 13:4631–4645

    Article  Google Scholar 

  • Minato K, Fukuda K (1987) Chemical vapor-deposition of silicon carbide for coated fuel particles. J Nucl Mater 149:233–246

    Article  Google Scholar 

  • Mitomo M, Kim YW, Hirotsuru H (1996) Fabrication of silicon carbide nanoceramics. J Mater Res 11:1601–1604

    Article  Google Scholar 

  • Nordell N, Nishino S, Yang JW, Jacob C, Pirouz P (1994) Growth of SiC using hexamethyldisilane in a hydrogen-poor ambient. Appl Phys Lett 64:1647–1649

    Article  Google Scholar 

  • Pan ZW et al (2000) Oriented silicon carbide nanowires: synthesis and field emission properties. Adv Mater 12:1186–1190

    Article  Google Scholar 

  • Papasouliotis GD, Sotirchos SV (1994) On the homogeneous chemistry of the thermal-decomposition of methyltrichlorosilane-thermodynamic analysis and kinetic modeling. J Electrochem Soc 141:1599–1611

    Article  Google Scholar 

  • Pedersen H, Leone S, Kordina O, Henry A, Nishizawa S, Koshka Y, Janzen E (2012) Chloride-based CVD growth of silicon carbide for electronic applications. Chem Rev 112:2434–2453

    Article  Google Scholar 

  • Pol VG, Pol SV, Gedanken A (2005) Novel synthesis of high surface area silicon carbide by RAPET (reactions under autogenic pressure at elevated temperature) of organosilanes. Chem Mater 17:1797–1802

    Article  Google Scholar 

  • Selvakumar J, Sathiyamoorthy D (2012) Prospects of chemical vapor grown silicon carbide thin films using halogen-free single sources in nuclear reactor applications: a review. J Mater Res 28:136–149

    Article  Google Scholar 

  • Shinoda Y, Nagano T, Gu H, Wakai F (1999) Superplasticity of silicon carbide. J Am Ceram Soc 82:2916–2918

    Article  Google Scholar 

  • Snead LL, Nozawa T, Katoh Y, Byun TS, Kondo S, Petti DA (2007) Handbook of SiC properties for fuel performance modeling. J Nucl Mater 371:329–377

    Article  Google Scholar 

  • Takahashi K, Nishino S, Saraie J (1992) Low-temperature growth of 3c-Sic on Si substrate by chemical vapor-deposition using hexamethyldisilane as a source material. J Electrochem Soc 139:3565–3571

    Article  Google Scholar 

  • Wu RB, Li BS, Gao MX, Chen JJ, Zhu QM, Pan Y (2008) Tuning the morphologies of SiC nanowires via the control of growth temperature, and their photoluminescence properties. Nanotechnology 19:335602

    Article  Google Scholar 

  • Wu XL, Fan JY, Qiu T, Yang X, Siu GG, Chu PK (2005) Experimental evidence for the quantum confinement effect in 3C-SiC nanocrystallites. Phys Rev Lett 94:026102

    Article  Google Scholar 

  • Yang SK, Cai WP, Zeng HB, Xu XX (2009) Ultra-fine beta-SiC quantum dots fabricated by laser ablation in reactive liquid at room temperature and their violet emission. J Mater Chem 19:7119–7123

    Article  Google Scholar 

  • Yang SK et al (2012) Fabrication and characterization of beaded SiC quantum rings with anomalous red spectral shift. Adv Mater 24:5598–5603

    Article  Google Scholar 

  • Yang ZG, Shaw LL (1996) Synthesis of nanocrystalline SiC at ambient temperature through high energy reaction milling. Nanostruct Mater 7:873–886

    Article  Google Scholar 

  • Zekentes K, Rogdakis K (2011) SiC nanowires: material and devices. Journal of Physics D-Applied Physics 44:133001

  • Zhang Y, Shi EW, Chen ZZ, Li XB, Xiao B (2006) Large-scale fabrication of silicon carbide hollow spheres. J Mater Chem 16:4141–4145

    Article  Google Scholar 

Download references

Acknowledgments

This study was funded by the National Natural Science Foundation of China (Grant Nos.: 91634113, 51302148).

Authors’ contributions

The manuscript was written through the contributions of all the authors. All the authors have given approval to the final version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malin Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, R., Liu, M. & Chang, J. Large-scale synthesis of monodisperse SiC nanoparticles with adjustable size, stoichiometric ratio and properties by fluidized bed chemical vapor deposition. J Nanopart Res 19, 26 (2017). https://doi.org/10.1007/s11051-016-3737-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-016-3737-y

Keywords

  • SiC
  • Nanoparticles
  • Fluidized bed chemical vapor deposition
  • Property manipulation
  • Mass production