Skip to main content
Log in

Geometric, stability, and electronic properties of gold-doped Pd clusters (Pd n Au, n = 3~20)

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

The structure, stability, and electronic properties of Pd n Au (n = 3~20) clusters are studied by density functional theory. The results show that the clusters studied here prefer three-dimensional structures even with very small atom number. It is found that the binding energies of Pd n Au clusters are higher than the corresponding pure Pd n clusters with the same atom number. Most Pd n Au clusters studied here are magnetic with magnetic moments ranging from 1.0 to 7.0 μ B. The dissociation energies of Pd atoms are lower than the doped gold atom, that is the doped Au atom will increase the mother clusters stability and activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Banerjee R, Katsenovich Y, Lagos L, McIintosh M, Zhang X, Li CZ (2010) Nanomedicine: magnetic nanoparticles and their biomedical applications. Curr Med Chem 17:3120–3141

    Article  Google Scholar 

  • BLOCHL P (1994) Projector augmented-wave method. Phys Rev B 50:17953–17979

    Article  Google Scholar 

  • Chen M, Kumar D, Yi C (2005) The promotional effect of gold in catalysis by palladium-gold. Science 310:291–293

    Article  Google Scholar 

  • Cui X et al (2001) Reproducible measurement of single-molecule conductivity. Science 294:571–574

    Article  Google Scholar 

  • Deka A, Deka RC (2012) A density functional study on equilibrium geometries, stabilities and electronic properties of Au5Li binary clusters. Appl Nanosci 2:359–364

    Article  Google Scholar 

  • Edwards JK, Solsona B, N EN, Carley AF, Herzing AA, Kiely CJ, Hutchings GJ (2009) Switching off hydrogen peroxide hydrogenation in the direct synthesis process. Science 323:1037–1041. doi:10.1126/science.1168980

    Article  Google Scholar 

  • Enache DI et al (2006) Solvent-free oxidation of primary alcohols to aldehydes using Au-Pd/TiO2 catalysts. Science 311:362–365. doi:10.1126/science.1120560

    Article  Google Scholar 

  • Frimpong RA, Hilt JZ (2010) Magnetic nanoparticles in biomedicine: synthesis, functionalization and applications. Nanomedicine 5:1401–1414. doi:10.2217/nnm.10.114

    Article  Google Scholar 

  • Giljohann DA, Seferos DS, Daniel WL, Massich MD, Patel PC, Mirkin CA (2010) Gold nanoparticles for biology and medicine. Angew Chem-Int Edit 49:3280–3294. doi:10.1002/anie.200904359

    Article  Google Scholar 

  • Guo JJ, Yang JX, Die D (2006a) First principle calculation on AunPt2 (n=1-4) clusters theochem. J Mol Struct 764:117–121. doi:10.1016/j.theochem.2006.02.014

    Article  Google Scholar 

  • Guo JJ, Yang JX, Die D (2006b) Quantum-mechanical study of small Au2Pdn (n=1 similar to 4) clusters. Commun Theor Phys 46:155–160

    Article  Google Scholar 

  • Gupta AK, Naregalkar RR, Vaidya VD, Gupta M (2007) Recent advances on surface engineering of magnetic iron oxide nanoparticles and their biomedical applications. Nanomedicine 2:23–39. doi:10.2217/17435889.2.1.23

    Article  Google Scholar 

  • Han G, Ghosh P, Rotello VM (2007) Functionalized gold nanoparticles for drug delivery. Nanomedicine 2:113–123. doi:10.2217/17435889.2.1.113

    Article  Google Scholar 

  • Hao R, Xing RJ, Xu ZC, Hou YL, Gao S, Sun SH (2010) Synthesis, functionalization, and biomedical applications of multifunctional magnetic nanoparticles. Adv Mater 22:2729–2742. doi:10.1002/adma.201000260

    Article  Google Scholar 

  • Jiang DE, Whetten RL (2009) Magnetic doping of a thiolated-gold superatom: first-principles density functional theory calculations. Phys Rev B 80:5. doi:10.1103/PhysRevB.80.115402

    Google Scholar 

  • Jin Y, Tian Y, Kuang X, Lu C, Cabellos JL, Mondal S, Merino G (2016) Structural and electronic properties of ruthenium-doped germanium clusters. J Phys Chem C 120:8399–8404

    Article  Google Scholar 

  • Kimble ML, Moore NA, Johnson GE, Castleman A Jr, Bürgel C, Mitrić R, Bonačić-Koutecký V (2006) Joint experimental and theoretical investigations of the reactivity of Au 2 O. J Chem Phys 125:204311

    Article  Google Scholar 

  • Kresse G, Furthmuller J (1996) Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci 6:15–50

    Article  Google Scholar 

  • McCarthy JR, Kelly KA, Sun EY, Weissleder R (2007) Targeted delivery of multifunctional magnetic nanoparticles. Nanomedicine 2:153–167. doi:10.2217/17435889.2.2.153

    Article  Google Scholar 

  • Namdeo M, Saxena S, Tankhiwale R, Bajpai M, Mohan YM, Bajpai SK (2008) Magnetic nanoparticles for drug delivery applications. J Nanosci Nanotechnol 8:3247–3271. doi:10.1166/jnn.2008.399

    Article  Google Scholar 

  • Pankhurst Q, Connolly J, Jones S (2003) Applications of magnetic nanoparticles in biomedicine. Journal of Physics D-Applied Physics 36:R167–R181

    Article  Google Scholar 

  • Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865

    Article  Google Scholar 

  • Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C (1992) Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys Rev B 46:6671–6687

    Article  Google Scholar 

  • Pittaway F et al (2009) Theoretical studies of palladium-gold nanoclusters: Pd-Au clusters with up to 50 atoms. J Phys Chem C 113:9141–9152. doi:10.1021/jp9006075

    Article  Google Scholar 

  • Pyykkö P (2004) Theoretical chemistry of gold. Angew Chem Int Ed 43:4412–4456

    Article  Google Scholar 

  • Sanchez A, Abbet S, Heiz U, Schneider W-D, Häkkinen H, Barnett R, Landman U (1999) When gold is not noble: nanoscale gold catalysts. J Phys Chem A 103:9573–9578

    Article  Google Scholar 

  • Sandhu A, Handa H, Abe M (2010) Synthesis and applications of magnetic nanoparticles for biorecognition and point of care medical diagnostics. Nanotechnology 21. doi:10.1088/0957-4484/21/44/442001

  • Sun C, Lee JSH, Zhang M (2008) Magnetic nanoparticles in MR imaging and drug delivery. Adv Drug Deliv Rev 60:1252–1265. doi:10.1016/j.addr.2008.03.018

    Article  Google Scholar 

  • Tan TL, Wang LL, Johnson DD, Bai KW (2012) A comprehensive search for stable Pt-Pd nanoalloy configurations and their use as tunable catalysts. Nano Lett 12:4875–4880. doi:10.1021/nl302405k

    Article  Google Scholar 

  • Valden M, Lai X, Goodman DW (1998) Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties. Science 281:1647–1650

    Article  Google Scholar 

  • Wang J, Bai J, Jellinek J, Zeng XC (2007) Gold-coated transition-metal anion Mn-13@Au-20 (-) with ultrahigh magnetic moment. J Am Chem Soc 129:4110. doi:10.1021/ja0664234

    Article  Google Scholar 

  • Wang L-M et al (2009) Magnetic doping of the golden cage cluster M@Au-16(-) (M=Fe,Co,Ni). Phys Rev B 79. doi:10.1103/PhysRevB.79.033413

  • Wang SJ, Kuang XY, Lu C, Li YF, Zhao YR (2011) Geometries, stabilities, and electronic properties of Pt-group-doped gold clusters, their relationship to cluster size, and comparison with pure gold clusters. Phys Chem Chem Phys 13:10119–10130

    Article  Google Scholar 

  • Wang Y, Lv J, Zhu L, Ma Y (2010) Crystal structure prediction via particle-swarm optimization. Phys Rev B 82:094116

    Article  Google Scholar 

  • Wang Y, Lv J, Zhu L, Y M (2012) CALYPSO: a method for crystal structure prediction. Comput Phys Commun 183:2063–2070

    Article  Google Scholar 

  • Wang YH, Huang L (2012) Multifunctional theranostic nanoparticles for brain tumors. Mol Ther 20:10–11. doi:10.1038/mt.2011.274

    Article  Google Scholar 

  • Xiao L, Wang L (2004) Structures of platinum clusters: planar or spherical? J Phys Chem A 108:8605–8614

    Article  Google Scholar 

  • Yadav BD, Kumar V (2010) Gd @ Au-15: a magic magnetic gold cluster for cancer therapy and bioimaging. Appl Phys Lett 97. doi:10.1063/1.3491269

  • Yuan D, Wang Y, Zeng Z (2005) Geometric, electronic, and bonding properties of AuNM (N= 1–7, M= Ni, Pd, Pt) clusters. J Chem Phys 122:114310

    Article  Google Scholar 

  • Zhang H, Watanabe T, Okumura M, Haruta M, Toshima N (2012) Catalytically highly active top gold atom on palladium nanocluster. Nat Mater 11:49–52

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by Science and Technology Commission of Shanghai Municipality (No. 14ZR1431100) and the National Natural Science Foundation of China (No. 61404085).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiang Ye or Xiao Gu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(DOCX 1606 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huan, H., Chen, Y., Wang, T. et al. Geometric, stability, and electronic properties of gold-doped Pd clusters (Pd n Au, n = 3~20). J Nanopart Res 18, 349 (2016). https://doi.org/10.1007/s11051-016-3666-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-016-3666-9

Keywords

Navigation