Geometric, stability, and electronic properties of gold-doped Pd clusters (PdnAu, n = 3~20)

Research Paper

Abstract

The structure, stability, and electronic properties of PdnAu (n = 3~20) clusters are studied by density functional theory. The results show that the clusters studied here prefer three-dimensional structures even with very small atom number. It is found that the binding energies of PdnAu clusters are higher than the corresponding pure Pdn clusters with the same atom number. Most PdnAu clusters studied here are magnetic with magnetic moments ranging from 1.0 to 7.0 μB. The dissociation energies of Pd atoms are lower than the doped gold atom, that is the doped Au atom will increase the mother clusters stability and activity.

Keywords

Nanoclusters Geometric structures Binding energy DFT 

Supplementary material

11051_2016_3666_MOESM1_ESM.docx (1.6 mb)
ESM 1(DOCX 1606 kb)

References

  1. Banerjee R, Katsenovich Y, Lagos L, McIintosh M, Zhang X, Li CZ (2010) Nanomedicine: magnetic nanoparticles and their biomedical applications. Curr Med Chem 17:3120–3141CrossRefGoogle Scholar
  2. BLOCHL P (1994) Projector augmented-wave method. Phys Rev B 50:17953–17979CrossRefGoogle Scholar
  3. Chen M, Kumar D, Yi C (2005) The promotional effect of gold in catalysis by palladium-gold. Science 310:291–293CrossRefGoogle Scholar
  4. Cui X et al (2001) Reproducible measurement of single-molecule conductivity. Science 294:571–574CrossRefGoogle Scholar
  5. Deka A, Deka RC (2012) A density functional study on equilibrium geometries, stabilities and electronic properties of Au5Li binary clusters. Appl Nanosci 2:359–364CrossRefGoogle Scholar
  6. Edwards JK, Solsona B, N EN, Carley AF, Herzing AA, Kiely CJ, Hutchings GJ (2009) Switching off hydrogen peroxide hydrogenation in the direct synthesis process. Science 323:1037–1041. doi:10.1126/science.1168980 CrossRefGoogle Scholar
  7. Enache DI et al (2006) Solvent-free oxidation of primary alcohols to aldehydes using Au-Pd/TiO2 catalysts. Science 311:362–365. doi:10.1126/science.1120560 CrossRefGoogle Scholar
  8. Frimpong RA, Hilt JZ (2010) Magnetic nanoparticles in biomedicine: synthesis, functionalization and applications. Nanomedicine 5:1401–1414. doi:10.2217/nnm.10.114 CrossRefGoogle Scholar
  9. Giljohann DA, Seferos DS, Daniel WL, Massich MD, Patel PC, Mirkin CA (2010) Gold nanoparticles for biology and medicine. Angew Chem-Int Edit 49:3280–3294. doi:10.1002/anie.200904359 CrossRefGoogle Scholar
  10. Guo JJ, Yang JX, Die D (2006a) First principle calculation on AunPt2 (n=1-4) clusters theochem. J Mol Struct 764:117–121. doi:10.1016/j.theochem.2006.02.014 CrossRefGoogle Scholar
  11. Guo JJ, Yang JX, Die D (2006b) Quantum-mechanical study of small Au2Pdn (n=1 similar to 4) clusters. Commun Theor Phys 46:155–160CrossRefGoogle Scholar
  12. Gupta AK, Naregalkar RR, Vaidya VD, Gupta M (2007) Recent advances on surface engineering of magnetic iron oxide nanoparticles and their biomedical applications. Nanomedicine 2:23–39. doi:10.2217/17435889.2.1.23 CrossRefGoogle Scholar
  13. Han G, Ghosh P, Rotello VM (2007) Functionalized gold nanoparticles for drug delivery. Nanomedicine 2:113–123. doi:10.2217/17435889.2.1.113 CrossRefGoogle Scholar
  14. Hao R, Xing RJ, Xu ZC, Hou YL, Gao S, Sun SH (2010) Synthesis, functionalization, and biomedical applications of multifunctional magnetic nanoparticles. Adv Mater 22:2729–2742. doi:10.1002/adma.201000260 CrossRefGoogle Scholar
  15. Jiang DE, Whetten RL (2009) Magnetic doping of a thiolated-gold superatom: first-principles density functional theory calculations. Phys Rev B 80:5. doi:10.1103/PhysRevB.80.115402 Google Scholar
  16. Jin Y, Tian Y, Kuang X, Lu C, Cabellos JL, Mondal S, Merino G (2016) Structural and electronic properties of ruthenium-doped germanium clusters. J Phys Chem C 120:8399–8404CrossRefGoogle Scholar
  17. Kimble ML, Moore NA, Johnson GE, Castleman A Jr, Bürgel C, Mitrić R, Bonačić-Koutecký V (2006) Joint experimental and theoretical investigations of the reactivity of Au 2 O. J Chem Phys 125:204311CrossRefGoogle Scholar
  18. Kresse G, Furthmuller J (1996) Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci 6:15–50CrossRefGoogle Scholar
  19. McCarthy JR, Kelly KA, Sun EY, Weissleder R (2007) Targeted delivery of multifunctional magnetic nanoparticles. Nanomedicine 2:153–167. doi:10.2217/17435889.2.2.153 CrossRefGoogle Scholar
  20. Namdeo M, Saxena S, Tankhiwale R, Bajpai M, Mohan YM, Bajpai SK (2008) Magnetic nanoparticles for drug delivery applications. J Nanosci Nanotechnol 8:3247–3271. doi:10.1166/jnn.2008.399 CrossRefGoogle Scholar
  21. Pankhurst Q, Connolly J, Jones S (2003) Applications of magnetic nanoparticles in biomedicine. Journal of Physics D-Applied Physics 36:R167–R181CrossRefGoogle Scholar
  22. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865CrossRefGoogle Scholar
  23. Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C (1992) Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys Rev B 46:6671–6687CrossRefGoogle Scholar
  24. Pittaway F et al (2009) Theoretical studies of palladium-gold nanoclusters: Pd-Au clusters with up to 50 atoms. J Phys Chem C 113:9141–9152. doi:10.1021/jp9006075 CrossRefGoogle Scholar
  25. Pyykkö P (2004) Theoretical chemistry of gold. Angew Chem Int Ed 43:4412–4456CrossRefGoogle Scholar
  26. Sanchez A, Abbet S, Heiz U, Schneider W-D, Häkkinen H, Barnett R, Landman U (1999) When gold is not noble: nanoscale gold catalysts. J Phys Chem A 103:9573–9578CrossRefGoogle Scholar
  27. Sandhu A, Handa H, Abe M (2010) Synthesis and applications of magnetic nanoparticles for biorecognition and point of care medical diagnostics. Nanotechnology 21. doi:10.1088/0957-4484/21/44/442001
  28. Sun C, Lee JSH, Zhang M (2008) Magnetic nanoparticles in MR imaging and drug delivery. Adv Drug Deliv Rev 60:1252–1265. doi:10.1016/j.addr.2008.03.018 CrossRefGoogle Scholar
  29. Tan TL, Wang LL, Johnson DD, Bai KW (2012) A comprehensive search for stable Pt-Pd nanoalloy configurations and their use as tunable catalysts. Nano Lett 12:4875–4880. doi:10.1021/nl302405k CrossRefGoogle Scholar
  30. Valden M, Lai X, Goodman DW (1998) Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties. Science 281:1647–1650CrossRefGoogle Scholar
  31. Wang J, Bai J, Jellinek J, Zeng XC (2007) Gold-coated transition-metal anion Mn-13@Au-20 (-) with ultrahigh magnetic moment. J Am Chem Soc 129:4110. doi:10.1021/ja0664234 CrossRefGoogle Scholar
  32. Wang L-M et al (2009) Magnetic doping of the golden cage cluster M@Au-16(-) (M=Fe,Co,Ni). Phys Rev B 79. doi:10.1103/PhysRevB.79.033413
  33. Wang SJ, Kuang XY, Lu C, Li YF, Zhao YR (2011) Geometries, stabilities, and electronic properties of Pt-group-doped gold clusters, their relationship to cluster size, and comparison with pure gold clusters. Phys Chem Chem Phys 13:10119–10130CrossRefGoogle Scholar
  34. Wang Y, Lv J, Zhu L, Ma Y (2010) Crystal structure prediction via particle-swarm optimization. Phys Rev B 82:094116CrossRefGoogle Scholar
  35. Wang Y, Lv J, Zhu L, Y M (2012) CALYPSO: a method for crystal structure prediction. Comput Phys Commun 183:2063–2070CrossRefGoogle Scholar
  36. Wang YH, Huang L (2012) Multifunctional theranostic nanoparticles for brain tumors. Mol Ther 20:10–11. doi:10.1038/mt.2011.274 CrossRefGoogle Scholar
  37. Xiao L, Wang L (2004) Structures of platinum clusters: planar or spherical? J Phys Chem A 108:8605–8614CrossRefGoogle Scholar
  38. Yadav BD, Kumar V (2010) Gd @ Au-15: a magic magnetic gold cluster for cancer therapy and bioimaging. Appl Phys Lett 97. doi:10.1063/1.3491269
  39. Yuan D, Wang Y, Zeng Z (2005) Geometric, electronic, and bonding properties of AuNM (N= 1–7, M= Ni, Pd, Pt) clusters. J Chem Phys 122:114310CrossRefGoogle Scholar
  40. Zhang H, Watanabe T, Okumura M, Haruta M, Toshima N (2012) Catalytically highly active top gold atom on palladium nanocluster. Nat Mater 11:49–52CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Department of PhysicsShanghai Normal UniversityShanghaiPeople’s Republic of China
  2. 2.Department of Applied PhysicsChongqing UniversityChongqingPeople’s Republic of China

Personalised recommendations