Skip to main content
Log in

Formation of closely packed Cu nanoparticle films by capillary immersion force for preparing low-resistivity Cu films at low temperature

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Films made of closely packed Cu nanoparticles (NPs) were obtained by drop casting Cu NP inks. The capillary immersion force exerted during the drying of the inks caused the Cu NPs to attract each other, resulting in closely packed Cu NP films. The apparent density of the films was found to depend on the type of solvent in the ink because the capillary immersion force is affected by the solvent surface tension and dispersibility of Cu NPs in the solvent. The closely packed particulate structure facilitated the sintering of Cu NPs even at low temperature, leading to low-resistivity Cu films. The sintering was also enhanced with a decrease in the size of NPs used. We demonstrated that a closely packed particulate structure using Cu NPs with a mean diameter 61.7 nm showed lower resistivity (7.6 μΩ cm) than a traditionally made Cu NP film (162 μΩ cm) after heat treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Barbooti MM, Alsammerrai DA (1986) Thermal-decomposition of citric-acid. Thermochim Acta 98:119–126. doi:10.1016/0040-6031(86)87081-2

    Article  Google Scholar 

  • Cheng BQ, Ngan AHW (2013) The sintering and densification behaviour of many copper nanoparticles: a molecular dynamics study. Comp Mater Sci 74:1–11. doi:10.1016/j.commatsci.2013.03.014

    Article  Google Scholar 

  • Choi CS, Jo YH, Kim MG, Lee HM (2012) Control of chemical kinetics for sub-10 nm Cu nanoparticles to fabricate highly conductive ink below 150 degrees C. Nanotechnology 23:065601. doi:10.1088/0957-4484/23/6/065601

    Article  Google Scholar 

  • Cong H, Cao WX (2003) Colloidal crystallization induced by capillary force. Langmuir 19:8177–8181. doi:10.1021/la344480

    Article  Google Scholar 

  • Daneshfar A, Baghlani M, Sarabi RS, Sahraei R, Abassi S, Kaviyan H, Khezeli T (2012) Solubility of citric, malonic, and malic acids in different solvents from 303.2 to 333.2 K. Fluid Phase Equilibr 313:11–15. doi:10.1016/j.fluid.2011.09.033

    Article  Google Scholar 

  • Deng DY, Cheng YR, Jin YX, Qi TK, Xiao F (2012) Antioxidative effect of lactic acid-stabilized copper nanoparticles prepared in aqueous solution. J Mater Chem 22:23989–23995. doi:10.1039/c2jm35041f

    Article  Google Scholar 

  • Deng DY, Jin YX, Cheng YR, Qi TK, Xiao F (2013) Copper nanoparticles: aqueous phase synthesis and conductive films fabrication at low sintering temperature. ACS Appl Mater Interfaces 5:3839–3846. doi:10.1021/Am400480k

    Article  Google Scholar 

  • Finsgar M, Kovac J, Milosev I (2010) Surface analysis of 1-hydroxybenzotriazole and benzotriazole adsorbed on Cu by X-ray photoelectron spectroscopy. J Electrochem Soc 157:C52–C60. doi:10.1149/1.3261762

    Article  Google Scholar 

  • Haynes WM, Lide DR (2010) CRC handbook of chemistry and physics: a ready-reference book of chemical and physical data, 91st edn. CRC Press, Boca Raton, Fla

    Google Scholar 

  • Hill FA, Havel TF, Hart AJ, Livermore C (2013) Enhancing the tensile properties of continuous millimeter-scale carbon nanotube fibers by densification. ACS Appl Mater Interfaces 5:7198–7207. doi:10.1021/am401524q

    Article  Google Scholar 

  • Hokita Y, Kanzaki M, Sugiyama T, Arakawa R, Kawasaki H (2015) High-concentration synthesis of sub-10-nm copper nanoparticles for application to conductive nanoinks. ACS Appl Mater Interfaces 7:19382–19389. doi:10.1021/acsami.5b05542

    Article  Google Scholar 

  • Ide E, Angata S, Hirose A, Kobayashi KF (2005) Metal-metal bonding process using Ag metallo-organic nanoparticles. Acta Mater 53:2385–2393. doi:10.1016/j.actamat.2005.01.047

    Article  Google Scholar 

  • Ishizaki T, Watanabe R (2012) A new one-pot method for the synthesis of Cu nanoparticles for low temperature bonding. J Mater Chem 22:25198–25206. doi:10.1039/c2jm34954j

    Article  Google Scholar 

  • Jeong S et al (2013) Air-stable, surface-oxide free Cu nanoparticles for highly conductive Cu ink and their application to printed graphene transistors. J Mater Chem C 1:2704–2710. doi:10.1039/c3tc00904a

    Article  Google Scholar 

  • Joo M, Lee B, Jeong S, Lee M (2012) Comparative studies on thermal and laser sintering for highly conductive Cu films printable on plastic substrate. Thin Solid Films 520:2878–2883. doi:10.1016/j.tsf.2011.11.078

    Article  Google Scholar 

  • Kaushik VK (1989) Identification of oxidation-states of copper in mixed oxides and chlorides using esca. Spectrochim Acta B 44:581–587. doi:10.1016/0584-8547(89)80137-5

    Article  Google Scholar 

  • Kim D, Moon J (2005) Highly conductive ink jet printed films of nanosilver particles for printable electronics. Electrochem Solid-State Lett 8:J30–J33. doi:10.1149/1.2073670

    Article  Google Scholar 

  • Kim C, Nogi M, Suganuma K, Yamato Y (2012) Inkjet-printed lines with well-defined morphologies and low electrical resistance on repellent pore-structured polyimide films. ACS Appl Mater Interfaces 4:2168–2173. doi:10.1021/am300160s

    Article  Google Scholar 

  • Kralchevsky PA, Denkov ND (2001) Capillary forces and structuring in layers of colloid particles. Curr Opin Colloid Interface Sci 6:383–401. doi:10.1016/S1359-0294(01)00105-4

    Article  Google Scholar 

  • Kralchevsky PA, Nagayama K (1994) Capillary forces between colloidal particles. Langmuir 10:23–36. doi:10.1021/La00013a004

    Article  Google Scholar 

  • Li W, Chen MF, Wei J, Li WJ, You C (2013) Synthesis and characterization of air-stable Cu nanoparticles for conductive pattern drawing directly on paper substrates. J Nanopart Res 15:1949. doi:10.1007/S11051-013-1949-Y

    Article  Google Scholar 

  • Liu K et al (2010a) Carbon nanotube yarns with high tensile strength made by a twisting and shrinking method. Nanotechnology 21:045708. doi:10.1088/0957-4484/21/4/045708

    Article  Google Scholar 

  • Liu QM, Zhou DB, Nishio K, Ichino R, Okido M (2010b) Effect of reaction driving force on copper nanoparticle preparation by aqueous solution reduction method. Mater Trans 51:1386–1389. doi:10.2320/matertrans.M2010067

    Article  Google Scholar 

  • Mcintyre NS, Sunder S, Shoesmith DW, Stanchell FW (1981) Chemical information from Xps—applications to the analysis of electrode surfaces. J Vac Sci Technol 18:714–721. doi:10.1116/1.570934

    Article  Google Scholar 

  • Nikoobakht B, Wang ZL, El-Sayed MA (2000) Self-assembly of gold nanorods. J Phys Chem B 104:8635–8640. doi:10.1021/jp001287p

    Article  Google Scholar 

  • Oliveira MLN, Malagoni RA, Franco MR (2013) Solubility of citric acid in water, ethanol, n-propanol and in mixtures of ethanol plus water. Fluid Phase Equilibr 352:110–113. doi:10.1016/j.fluid.2013.05.014

    Article  Google Scholar 

  • Woo K, Kim D, Kim JS, Lim S, Moon J (2009) Ink-jet printing of Cu-Ag-based highly conductive tracks on a transparent substrate. Langmuir 25:429–433. doi:10.1021/La802182y

    Article  Google Scholar 

  • Yabuki A, Arriffin N (2010) Electrical conductivity of copper nanoparticle thin films annealed at low temperature. Thin Solid Films 518:7033–7037. doi:10.1016/j.tsf.2010.07.023

    Article  Google Scholar 

  • Yang W, Liu C, Zhang Z, Liu Y, Nie S (2013) Preparation and conductive mechanism of copper nanoparticles ink. J Mater Sci Mater Electron 24:5175–5182. doi:10.1007/s10854-013-1541-3

    Article  Google Scholar 

  • Yokoyama S, Takahashi H, Itoh T, Motomiya K, Tohji K (2014) Synthesis of metallic Cu nanoparticles by controlling Cu complexes in aqueous solution. Adv Powder Technol 25:999–1006. doi:10.1016/j.apt.2014.01.024

    Article  Google Scholar 

  • Yokoyama S, Motomiya K, Takahashi H, Tohji K (2016) Green synthesis of Cu micro/nanoparticles for low-resistivity Cu thin films using ascorbic acid in aqueous solution. J Mater Chem C 4:7494–7500. doi:10.1039/c6tc02280d

    Article  Google Scholar 

  • Yonezawa T, Takeoka S, Kishi H, Ida K, Tomonari M (2008) The preparation of copper fine particle paste and its application as the inner electrode material of a multilayered ceramic capacitor. Nanotechnology 19:145706. doi:10.1088/0957-4484/19/14/145706

    Article  Google Scholar 

  • Zou XQ, Ying EB, Dong SJ (2006) Seed-mediated synthesis of branched gold nanoparticles with the assistance of citrate and their surface-enhanced Raman scattering properties. Nanotechnology 17:4758–4764. doi:10.1088/0957-4484/17/18/038

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by JSPS KAKENHI Grant-in-Aid for Young Scientists (B) 15K16155.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shun Yokoyama.

Electronic supplementary material

ESM 1

(DOCX 8604 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yokoyama, S., Motomiya, K., Takahashi, H. et al. Formation of closely packed Cu nanoparticle films by capillary immersion force for preparing low-resistivity Cu films at low temperature. J Nanopart Res 18, 326 (2016). https://doi.org/10.1007/s11051-016-3648-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-016-3648-y

Keywords

Navigation