Study of 223Ra uptake mechanism by Fe3O4 nanoparticles: towards new prospective theranostic SPIONs

  • Olga Mokhodoeva
  • Martin Vlk
  • Eva Málková
  • Ekaterina Kukleva
  • Petra Mičolová
  • Karel Štamberg
  • Miroslav Šlouf
  • Rustam Dzhenloda
  • Ján KozempelEmail author
Research Paper


The use of superparamagnetic iron oxide nanoparticles (SPIONs) and radiolabelled nanoparticles (NPs) has grown considerably over the recent years, and the SPIONs labelled with medicinal radionuclides offer new opportunities in multimodal diagnostics and in the drug-delivery systems for targeted alpha-particle therapy (TAT) driven by magnetic field gradient or by biologically active moieties bound on NPs shell. However, the mechanisms of NPs radiolabelling are not studied substantially and still remain unclear, even though the way of label attachment directly implies the stability of the label-nanoparticle construct. Since the 223Ra was the first clinically approved alpha-emitter, it is a promising nuclide for further development of its targeted carriers. We report here on the study of 223Ra uptake by the Fe3O4 SPIONs, together with an attempt to propose the 223Ra uptake mechanism by the Fe3O4 NPs in the presence of a phosphate buffer a typical formulation medium, under the pseudo-equilibrium conditions. Further, the in vitro stability tests of the prepared [223Ra]Fe3O4 NPs were performed to estimate the 223Ra label stability. The potential use of 223Ra-labelled SPIONs in theranostic applications is also discussed.

Graphical abstract


Magnetic nanoparticles Radium Sorption Mechanism Fe3O4 Theranostics Biomedicine 



Authors are grateful to prof. Jan John for helpful comments and kind support and to Dr. Valery Shkinev for the scientific concept inspiration. This work has been partially supported by: the Russian Foundation for Basic Research and Moscow city Government according to the research project No 15-33-70004 «mol_а_mos»; the Technology Agency of the Czech Republic, grant No.: TA03010027 and the Health Research Agency of the Czech Republic, grant No.: 16-30544A. The electron microscopy at the Institute of Macromolecular Chemistry was supported by the Technology Agency of the Czech Republic, project No.: TE01020118 and the Ministry of Education, Youth and Sports of the Czech Republic, project No.: POLYMAT LO1507, program NPU I.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

No animal studies were performed.


  1. Alexiou C, Jurgons R, Schmid RJ, Bergemann C, Henke J, Erhardt W, Huenges E, Parak F (2003) Magnetic drug targeting—biodistribution of the magnetic carrier and the chemotherapeutic agent mitoxantrone after locoregional cancer treatment. J Drug Targ 11(3):139–149CrossRefGoogle Scholar
  2. Ames LL, McGarrah JE, Walker BA, Salter PF (1983) Uranium and radium sorption on amorphous ferric oxyhydroxide. Chem Geol 40(1–2):135–148CrossRefGoogle Scholar
  3. Arruebo M, Fernández-Pacheco R, Ibarra MR, Santamaría J (2007) Magnetic nanoparticles for drug delivery. Nano Today 2(3):22–32CrossRefGoogle Scholar
  4. Bayer Pharma AG (2016) Xofigo® - Summary of product characteristics. Accessed 1 May 2016
  5. Burke BP, Baghdadi N, Clemente GS, Camus N, Guillou A, Kownacka AE, Domarkas J, Halime Z, Tripier R, Archibald SJ (2014) Final step gallium-68 radiolabelling of silica-coated iron oxide nanorods as potential PET/MR multimodal imaging agents. Faraday Discuss 175:59–71Google Scholar
  6. Bychkova AV, Sorokina ON, Rosenfeld MA, Kovarski AL (2015) Multifunctional biocompatible coatings on magnetic nanoparticles. Russ Chem Rev 81(11):1026–1050CrossRefGoogle Scholar
  7. Devaraj NK, Keliher EJ, Thurber GM, Nahrendorf M, Weissleder R (2009) 18F labeled nanoparticles for in vivo PET-CT imaging. Bioconjug Chem 20(2):397–401CrossRefGoogle Scholar
  8. Dvořák L, Ledvinka T, Sobotka M (1991) FAMULUS 3.1, Computer equipment, PragueGoogle Scholar
  9. Filipská H, Štamberg K (2005) Mathematical modeling of a Cs(I)—Sr(II)—bentonite—magnetite sorption system, simulating the processes taking place in a deep geological repository. Acta Polytech 45(5):11–18Google Scholar
  10. Filipská H, Štamberg K (2006) Sorption of Cs(I) and Sr(II) on a mixture of bentonite and magnetite using SCM + IExM: a parametric study. J Radioanal Nucl Chem 270(3):531–542CrossRefGoogle Scholar
  11. Gonneea ME, Morris PJ, Dulaiova H, Charette MA (2008) New perspectives on radium behavior within a subterranean estuary. Mar Chem 109(3–4):250–267CrossRefGoogle Scholar
  12. Grazulis S, Chateigner D, Downs RT, Yokochi AT, Quiros M, Lutterotti L, Manakova E, Butkus J, Moeck P, Le Bail A (2009) Crystallography Open Database—an open-access collection of crystal structures. J Appl Crystallogr 42:726–729CrossRefGoogle Scholar
  13. Guseva LI, Tikhomirova GS, Dogadkin NN (2004) Separation of radium from alkaline-earth metals and actinides in aqueous-methanol solutions of HNO3. 227Ac-223Ra generator. Radiochemistry 46(1):58–62CrossRefGoogle Scholar
  14. Herbelin AL, Westall JC (1996) FITEQL—a computer program for determination of chemical equilibrium constants from experimental data. Version 3.2, Report 96-01. Department of Chemistry, Oregon State University, Corvallis, Oregon, USAGoogle Scholar
  15. Hoffman D, Sun M, Yang L, McDonagh PR, Corwin F, Sundaresan G, Wang L, Vijayaragavan V, Thadigiri C (2014) Intrinsically radiolabelled [59Fe]-SPIONs for dual MRI/radionuclide detection. Am J Nucl Med Mol Imag 4(6):548–560Google Scholar
  16. Kirby HW, Salutsky ML, Grace WR (1964) The radiochemistry of radium. Springfield, VirginiaGoogle Scholar
  17. Kozempel J, Vlk M (2014) Nanoconstructs in targeted alpha-therapy. Curr Nanomed 4(2):71–76. doi: 10.2174/1877912305666150102000549 Google Scholar
  18. Kozempel J, Vlk M, Málková E, Bajzíková A, Bárta J, Santos-Oliveira R, Malta Rossi A (2015) Prospective carriers of 223Ra for targeted alpha particle therapy. J Radioanal Nucl Chem 304(1):443–447CrossRefGoogle Scholar
  19. Kraus W, Nolze G (1996) POWDER CELL—a program for the representation and manipulation of crystal structures and calculation of the resulting X-ray powder patterns. J Appl Crystallogr 29:301–303CrossRefGoogle Scholar
  20. Kroupová H (2004) Studies of sorption interactions in system: Bentonite—selected radionuclides and container corrosion products—underground water. Doctoral Thesis. Prague, Czech Technical University, Department of Nuclear ChemistryGoogle Scholar
  21. Lábár JL (2005) Consistent indexing of a (set of) single crystal SAED pattern(s) with the ProcessDiffraction. Ultramicroscopy 103:237–249CrossRefGoogle Scholar
  22. Laurent S, Forge D, Port M, Roch A, Robic C, Vander Elst L, Muller RN (2008) Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations and biological applications. Chem Rev 108(6):2064–2110CrossRefGoogle Scholar
  23. Li W-P, Liao P-Y, Su C-H, Yeh C-S (2014) Formation of oligonucleotides-gated silica shell-coated Fe3O4-Au core-shell nanotrisoctahedra for magnetically targeted and near-infrared light responsive theranostic platform. J Am Chem Soc 136(28):10062–10075CrossRefGoogle Scholar
  24. Ma M, Zhang Y, Yu W, Shen H, Zhang H, Gu N (2003) Preparation and characterization of magnetite nanoparticles coated by amino silane. Colloid Surf A 212:219–226CrossRefGoogle Scholar
  25. Mody VV, Cox A, Shah S, Singh A, Bevins W, Parihar H (2014) Magnetic nanoparticle drug delivery systems for targeting tumor. Appl Nanosci 4:385–392CrossRefGoogle Scholar
  26. Mokhodoeva O, Guseva L, Dogadkin N (2015) Isolation of generator-produced Ra-223 in 0.9% NaCl solutions containing EDTA for direct radiotherapeutic studies. J Radioanal Nucl Chem 304(1):449–453CrossRefGoogle Scholar
  27. Nallathamby PD, Mortensen NP, Palko HA, Malfatti M, Smith C, Sonnett J, Doktycz MJ, Gu BH, Roeder RK, Wang W, Retterer ST (2015) New surface radiolabeling schemes of super paramagnetic iron oxide nanoparticles (SPIONs) for biodistribution studies. Nanoscale 7(15):6545–6555CrossRefGoogle Scholar
  28. Nilsson S, Larsen RH, Foss SD, Balteskard L, Borch KW, Westlin J-E, Salberg G, Bruland ØS (2005) Clin Cancer Res 11(12):4451–4459CrossRefGoogle Scholar
  29. OECD-NEA (2016) ZZ-HATCHES-20, Database for radiochemical modelling. Accessed 1 May 2016
  30. Park J, Kadasala NR, Abouelmagd SA, Castanares MA, Collins DS, Wei A, Yeo Y (2016) Polymer-iron oxide composite nanoparticles for EPR-independent drug delivery. Biomaterials 101:285–295CrossRefGoogle Scholar
  31. Piotrowska A, Leszczuk E, Bruchertseifer F, Morgenstern A, Bilewicz A (2013) Functionalized NaA nanozeolites labeled with Ra-224, Ra-225 for targeted alpha therapy. J Nanopart Res 15:2082. doi: 10.1007/s11051-013-2082-7 CrossRefGoogle Scholar
  32. Reddy LH, Arias JL, Nicolas J, Couvreur P (2012) Magnetic nanoparticles: design and characterization, toxicity and biocompatibility, pharmaceutical and biomedical applications. Chem Rev 112(11):5818–5878CrossRefGoogle Scholar
  33. Sajih M, Bryan ND, Livens FR, Vaughan DJ, Descostes M, Phrommavanh V, Nos J, Morris K (2014) Adsorption of radium and barium on goethite and ferrihydrite: a kinetic and surface complexation modelling study. Geochim Cosmochim Ac 146:150–163CrossRefGoogle Scholar
  34. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH image to imageJ: 25 years of image analysis. Nat Methods 9:671–675CrossRefGoogle Scholar
  35. Shore ND (2015) Radium-223 dichloride for metastatic castration-resistant prostate cancer: the urologist’s perspective. Urology 85(4):717–724CrossRefGoogle Scholar
  36. Singh N, Jenkins GJS, Asadi R, Doak SH (2010) Potential toxicity of superparamagnetic iron oxide nanoparticles (SPION). Nano Rev 1:5358. doi: 10.3402/nano.v1i0.5358 CrossRefGoogle Scholar
  37. Slouf M, Ostafinska A, Nevoralova M, Fortelny I (2015) Morphological analysis of polymer systems with broad particle size distribution. Polym Test 42:8–16CrossRefGoogle Scholar
  38. Tsiapa I, Efthimiadou EK, Fragogeorgi E, Loudos G, Varvarigou AD, Bouziotis P, Kordas GC, Mihailidis D, Nikiforidis GC, Xanthopoulos S, Psimadas D, Paravatou-Petsotas M, Palamaris L, Hazle JD, Kagadis GC (2014) (99 m)Tc-labeled aminosilane-coated iron oxide nanoparticles for molecular imaging of ανβ3-mediated tumor expression and feasibility for hyperthermia treatment. J Colloid Interf Sci 433:163–175CrossRefGoogle Scholar
  39. Waldron RD (1955) Infrared spectra of ferrites. Phys Rev 99:1727–1729CrossRefGoogle Scholar
  40. Wang G, de Kruijff RM, Rol A, Thijssen L, Mendes E, Morgenstern A, Bruchertseifer F, Stuart MCA, Wolterbeek HT, Denkova AG (2014) Retention studies of recoiling daughter nuclides of 225Ac in polymer vesicles. Appl Radiat Isot 85:45–53CrossRefGoogle Scholar
  41. Woodward J, Kennel SJ, Stuckey A, Osborne D, Wall J, Rondinone AJ, Standaert RF, Mirzadeh S (2011) LaPO4 nanoparticles doped with actinium-225 that partially sequester daughter radionuclides. Bioconjug Chem 22(4):766–776CrossRefGoogle Scholar
  42. Yang M, Cheng K, Qi S, Liu H, Jiang Y, Jiang H, Li J, Chen K, Zhang H, Cheng Z (2013) Affibody modified and radiolabeled gold-iron oxide hetero-nanostructures for tumor PET, optical and MR imaging. Biomaterials 34(11):2796–2806CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Vernadsky Institute of Geochemistry and Analytical ChemistryRussian Academy of SciencesMoscowRussian Federation
  2. 2.Department of Nuclear Chemistry, Faculty of Nuclear Sciences and Physical EngineeringCzech Technical University in PraguePrague 1Czech Republic
  3. 3.Institute of Macromolecular ChemistryAcademy of Sciences of the Czech RepublicPrague 6Czech Republic

Personalised recommendations