Advertisement

Chemical synthesis, characterization and evaluation of antimicrobial properties of Cu and its oxide nanoparticles

  • Abesach Moshalagae Motlatle
  • Sreejarani Kesavan PillaiEmail author
  • Manfred Rudolf Scriba
  • Suprakas Sinha Ray
Research Paper

Abstract

Cu nanoparticles were synthesized using low-temperature aqueous reduction method at pH 3, 5, 7, 9 and 11 in presence of ascorbic acid and polyvinylpyrrolidone. The nanoparticles were characterized using transmission electron microscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray diffraction techniques. Results demonstrated a strong dependence of synthesis pH on the size, shape, chemical composition and structure of Cu nanoparticles. While lower pH conditions of 3 and 5 produced Cu0, higher pH levels (more than 7) led to the formation of Cu2O/CuO nanoparticles. The reducing capacity of ascorbic acid, capping efficiency of PVP and the resulting particle sizes were strongly affected by solution pH. The results of in vitro disk diffusion tests showed excellent antimicrobial activity of Cu2O/CuO nanoparticles against a mixture of bacterial strains (Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa), indicating that the size as well as oxidation state of Cu contributes to the antibacterial efficacy. The results indicate that varying synthesis pH is a strategy to tailor the composition, structure and properties of Cu nanoparticles.

Keywords

Chemical reduction, pH Cu, Cu2O, CuO nanoparticles Characterization Structure Antimicrobial properties 

Notes

Acknowledgments

The authors wish to thank Department of Science and Technology (DST) and Council for scientific and Industrial Research (CSIR), South Africa for the financial support (Project No. HGER20S). The NCNSM, CSIR characterization facility and staff are acknowledged for their support with characterization of materials.

Compliance with ethical standards

Conflict of interest

Details on potential conflicts of interest are included in the ‘publishing ethics’ section.

References

  1. Abboud Y, Saffaj T, Chagraoui A, Bouari AE, Brouzi K, Tanane O, Ihssane B (2014) Biosynthesis, characterization and antimicrobial activity of copper oxide nanoparticles (CONPs) produced using brown alga extract (Bifurcaria bifurcata). Appl Nanosci 4:571–576CrossRefGoogle Scholar
  2. Ahamed M, Alhadlaq HA, Khan MAM, Karuppiah P, Al-Dhabi NA (2014a) Synthesis, characterization, and antimicrobial activity of copper oxide nanoparticles. J Nanomater. doi: 10.1155/637858 Google Scholar
  3. Ahamed M, Alhadlaq HA, Khan MM, Karuppiah P, Aldhabi NA (2014b) Synthesis, characterization and antimicrobial activity of copper oxide nanoparticles. J Nanomater. doi: 10.1155/2014/637858 Google Scholar
  4. Azam A, Ahmed AS, Oves M, Khan MS, Habib SS, Memic A (2012) Antimicrobial activity of metal oxide nanoparticles against Gram-positive and Gram-negative bacteria: a comparative study. Int J Nanomed 7:6003–6009CrossRefGoogle Scholar
  5. Bagchia B, Kara S, Deyb SK, Bhandarya S, Roya D, Mukhopadhyayc TK, Dasa S, Nandya P (2013) In situ synthesis and antibacterial activity of copper nanoparticle loaded natural montmorillonite clay based on contact inhibition and ion release. Colloid Surf B 108:358–365CrossRefGoogle Scholar
  6. Besinis A, De Peralta T, Handy RD (2014) The antibacterial effects of silver, titanium dioxide and silica dioxide nanoparticles compared to the dental disinfectant chlorhexidine on Streptococcus mutans using a suite of bioassays. Nanotoxicology 8:1–16CrossRefGoogle Scholar
  7. Bode AM, Cunningham L, Rose RC (1990) Spontaneous decay of oxidized ascorbic acid (dehydro-L-ascorbic acid) evaluated by high-pressure liquid chromatography. Clin Chem 36:1807–1809Google Scholar
  8. Burkowska-But A, Sionkowski G, Walczak M (2014) Influence of stabilizers on the antimicrobial properties of silver nanoparticles introduced into natural water. J Environ Sci 26:542–549CrossRefGoogle Scholar
  9. Cioffi N, Torsi L, Ditaranto N, Tantillo G, Ghibelli L, Sabbatini L, Bleve-Zacheo T, D’Alessio M, Zambonin PG, Traversa E (2005) Copper nanoparticle/polymer composites with antifungal and bacteriostatic properties. Chem Mater 7:5255–5262CrossRefGoogle Scholar
  10. Dhas NA, Raj CP, Gedanken A (1998) Synthesis, characterization, and properties of metallic copper nanoparticles. Chem Mater 10:1446–1452CrossRefGoogle Scholar
  11. Dizaj SM, Lotfipour F, Barzegar-Jalali M, Zarrintan MH, Adibkia K (2014) Antimicrobial activity of the metals and metal oxide nanoparticles. Mat Sci Eng C 44:278–284CrossRefGoogle Scholar
  12. Fakruddin M, Hossain Z, Afroz H (2012) Prospects and applications of nanobiotechnology: a medical perspective. J Nanobiotech. doi: 10.1186/1477-3155-10-31 Google Scholar
  13. Godymchuk A, Frolov G, Gusev A, Zakharova O, Yunda E, Kuznetsov D, Kolesnikov E (2015) Antibacterial properties of copper nanoparticle dispersions: influence of synthesis conditions and physicochemical characteristics. Mater Sci Eng 98:12033–12041Google Scholar
  14. Granata G, Yamaoka T, Pagnanelli F, Fuwa A (2016) Study of the synthesis of copper nanoparticles: the role of capping and kinetic towards control of particle size and stability. J Nanopart Res. doi: 10.1007/s11051-016-3438-6 Google Scholar
  15. Gunawan C, Teoh WY, Marquis CP, Amal R (2011) Induced adaptation of bacillus sp. to antimicrobial nanosilver. ACS Nano 5:7214–7225CrossRefGoogle Scholar
  16. Hashemipour H, Zadeh ME, Pourakbari R, Rahimi P (2011) Int J Phys Sci 6:4331–4336Google Scholar
  17. Jeong EH, Woo JY, Cho YH, Jeong YK, Kima KH, Kimb BK (2008) Holographic polymer-dispersed liquid crystals using vinyloxytrimethylsilane. Int Sci. doi: 10.1002/PI.2510 Google Scholar
  18. Katwal R, Kaur H, Sharma G, Naushad M, Pathania D (2015) Electrochemical synthesized copper oxide nanoparticles for enhanced photocatalytic and antimicrobial activity. J Ind Eng Chem 31:173–184CrossRefGoogle Scholar
  19. Kaul G, Amiji M (2004) Polymeric gene delivery systems. In: Wise DL, Hasirci V, Lewandrowski KU, Yaszemski MJ, Altobelli DW, Trantolo DJ (eds) Tissue engineering and novel delivery systems. Marcel Dekker, Inc, New York, pp 333–367Google Scholar
  20. Kethirabalan C, Gurusamy A (2014) Antibacterial activity of pH-dependent biosynthesized silver nanoparticles against clinical pathogen. BioMed Res-Int. doi: 10.1155/2014/725165 Google Scholar
  21. Kobayashi Y, Shirochi T, Yasunda Y, Morita T (2013) Preparation of metallic copper nanoparticles by reduction of copper ions in aqueous solution and their metal-metal bonding properties. Int J Chem Molec Nucl Mater Metall Eng 7:769–772Google Scholar
  22. Kumar RV, Mastai Y, Diamant Y, Gedanken A (2001) Sonochemical synthesis of amorphous Cu and nanocrystalline Cu2O embedded in a polyaniline matrix. J Mater Chem 11:1209–1213CrossRefGoogle Scholar
  23. Lee Y-J, Kim S, Park S-H, Park H, Huh Y-D (2011) Morphology-dependent antibacterial activities of Cu2O. Mater Lett 65:818–820CrossRefGoogle Scholar
  24. Liu Z, Bondo Y (2003) A novel method for preparing copper nanorods and nanowires. Adv Mater 15:303–305CrossRefGoogle Scholar
  25. Mathews S, Hans M, Mücklich F, Solioz M (2013) Contact killing of bacteria on copper is suppressed if bacterial-metal contact is prevented and is induced on iron by copper ions. Appl Environ Microbiol 79:2605–2611CrossRefGoogle Scholar
  26. Meghana S, Kabra P, Chakraborty S, Padmavathy N (2015) Understanding the pathway of antibacterial activity of copper oxide nanoparticles. RSC Adv 5:12293–12299CrossRefGoogle Scholar
  27. Mott D, Galkowski J, Wang L, Lou J, Zhong CJ (2007) Synthesis of size-controlled and shaped copper nanoparticles. Langmuir 23:5740–5745CrossRefGoogle Scholar
  28. Muller TJ (2009) Copper based nanomaterials for oxidation catalysis. (Thesis for Magister Scintiae), University of the Free StateGoogle Scholar
  29. Murray CB, Kagan CR, Bawendi MG (2000) Review: synthesis and characterization of monodisperse nanocrystals and closepacked nanocrystal assemblies. Mater Sci 30:545–610CrossRefGoogle Scholar
  30. Nikam AV, Arulkashmir A, Krishnamoorthy K, Kulkarn AA, Prasad BLV (2014) pH-dependent single-step rapid synthesis of CuO and Cu2O nanoparticles from the same precursor. Cryst Growth Des 14:4329–4334CrossRefGoogle Scholar
  31. Pal S, Tak YK, Song JM (2007) Does the antimicrobial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl Environ Microbiol 73:1712–1720CrossRefGoogle Scholar
  32. Panacek A et al (2006) Silver colloid nanoparticles: synthesis, characterization, and their antibacterial activity. J Phys Chem B 110:16248–16253CrossRefGoogle Scholar
  33. Pande S, Jana S, Sinha A, Datta A, Pal T (2008) Nanoparticle catalyzed clock reaction. J Phys Chem C 112:3619–3626CrossRefGoogle Scholar
  34. Qing-ming L, Yasunami T, Kuruda K, Okido M (2012) Preparation of Cu nanoparticles with ascorbic acid by aqueous solution reduction method. Trans Nonferr Met Soc 22:2198–2203CrossRefGoogle Scholar
  35. Ramyadevi J, Jeyasubramanian K, Marikani A, Rajakumar G, Rahuman AA (2012) Mater Lett 71:114–116CrossRefGoogle Scholar
  36. Rena G, Hub D, Chengb EWC, Vargas-Reusc MA, Reipd P, Allakerc RP (2009) Characterisation of copper oxide nanoparticles for antimicrobial applications. Int J Antimicrob AG 33:587–590CrossRefGoogle Scholar
  37. Roco MC, Mirkin CA, Hersam MC (2011) Nanotechnology research directions for societal needs in 2020: summary of international study. J Nanopart Res 13:897–919CrossRefGoogle Scholar
  38. Salata OV (2004) Applications of nanoparticles in biology and medicine. J Nanobiotech. doi: 10.1186/1477-3155-2-3 Google Scholar
  39. Schink B (2002) Synergistic interactions in the microbial world. Antonie Van Leeuwenhoek 81:257–261CrossRefGoogle Scholar
  40. Seil JT, Webster TJ (2012) Antimicrobial applications of nanotechnology: methods and literature. Int J Nanomed 7:2767–2781Google Scholar
  41. Shaffiey SF, Shapoori M, Bozorgnia A, Ahmadi M (2014) Synthesis and evaluation of bactericidal properties of CuO nanoparticles against Aeromonas hydrophila. J Nanomed 1:198–204Google Scholar
  42. Sondi I, Salopek-Sondi B (2004) Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interf Sci 275:177–182CrossRefGoogle Scholar
  43. Usman MS, El Zowalaty ME, Shameli K, Zainuddin N, Salama M, Ibrahim NA (2013) Synthesis, characterization, and antimicrobial properties of copper nanoparticles. Int J Nanomed 8:4467–4479Google Scholar
  44. Valodkara M, Rathorea PS, Jadejab RN, Thounaojamb M, Devkarb RV, Thakorea S (2012) Cytotoxicity evaluation and antimicrobial studies of starch capped water soluble copper nanoparticles. J Hazard Mater 201–202:244–249CrossRefGoogle Scholar
  45. Veerasamy R, Xin TZ, Gunasagaran S, Xiang TFW, Yang EFC, Jeyakumar N, Dhanaraj SA (2011) Biosynthesis of silver, nanoparticles using mangosteen leaf extract and evaluation of their antimicrobial activities. J Saudi Chem Soc 15:113–120CrossRefGoogle Scholar
  46. Vitulli G, Bernini M, Bertozzi S, Pitzalis E, Salvadori P, Coluccia S, Matra G (2002) Nanoscale copper particles derived from solvated Cu atoms in the activation of molecular oxygen. Chem Mater 14:1183–1186CrossRefGoogle Scholar
  47. Waller PA, Pickering WF (1992) Effect of time and pH on the lability of copper and zinc sorbed on humic acid particles. Chem Spec Bioavailab 4:29–41Google Scholar
  48. Yang M, Zhu J (2003) Spherical hollow assembly composed of Cu2O nanoparticles. J Cryst Growth 256:134–138CrossRefGoogle Scholar
  49. Yu W, Xie H, Chen L, Li Y, Zhang C (2009) Synthesis and characterization of monodispersed copper colloids in polar solvents. Nanoscale Res Lett 4:465–470CrossRefGoogle Scholar
  50. Zayyoun N, Bahmad L, Laaˆnab L, Jaber B (2016) The effect of pH on the synthesis of stable Cu2O/CuO nanoparticles by sol–gel method in a glycolic medium. Appl Phys. doi: 10.1007/s00339-016-0024-9 Google Scholar
  51. Zhang Z, Zhao B, Hu L (1996) PVP protective mechanism of ultrafine silver powder synthesized by chemical reduction processes. J Solid State Chem 121:105–110CrossRefGoogle Scholar
  52. Zhao Y, Zhu J, Bian N, Chen H (2004) Microwave-induced polyol-process synthesis of copper and copper oxide nanocrystals with controllable morphology. Eur J Inorg Chem 20:4072–4080CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Abesach Moshalagae Motlatle
    • 1
    • 2
  • Sreejarani Kesavan Pillai
    • 1
    Email author
  • Manfred Rudolf Scriba
    • 1
  • Suprakas Sinha Ray
    • 1
    • 2
  1. 1.DST/CSIR Nanotechnology Innovation Centre, National Centre for Nano-Structured MaterialsCouncil for Scientific and Industrial ResearchPretoriaSouth Africa
  2. 2.Department of Applied ChemistryUniversity of JohannesburgDoornfonteinSouth Africa

Personalised recommendations