Skip to main content

Synthesis and characterization of magnetic silica-supported Mn(II)-substituted polyoxophosphotungstate as catalyst in sulfoxidation reaction

Abstract

Polyoxometalate-functionalized magnetic nanoparticles (Fe3O4@SiO2–MnPOW) were successfully synthesized via covalent anchoring of Mn(II)-substituted phosphotungstate on ammonium-modified Fe3O4@SiO2 nanoparticles. The complete characterization of nanoparticles has been carried out by scanning electron microscope, energy-dispersive X-ray, X-ray diffraction, Fourier transform infrared and elemental analysis. The resulting nanocomposites were efficient catalysts for the selective oxidation of sulfides with different green oxidants in good to excellent yields and also high selectivity. Leaching and recycling tests showed that the nanocatalyst can be reused several times without significant loss of efficiency.

Graphical Abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Bagherzadeh M, Haghdoost MM, Amini M, Derakhshandeh PG (2012) Molybdenum oxo–peroxo complex: a very fast catalyst for oxidation and reduction of sulfur-based compounds. Catal Commun 23:14–19. doi:10.1016/j.catcom.2012.02.026

    Article  Google Scholar 

  • Buzoglu L, Maltas E, Ozmen M, Yildiz S (2014) Interaction of donepezil with human serum albumin on amine-modified magnetic nanoparticles. Colloids surfaces A Physicochem Eng Aspects 442:139–145. doi:10.1016/j.colsurfa.2013.03.009

    Article  Google Scholar 

  • Das SP, Boruah JJ, Chetry H, Islam NS (2012) Selective oxidation of organic sulfides by mononuclear and dinuclear peroxotungsten(VI) complexes. Tetrahedron Lett 53:1163–1168. doi:10.1016/j.tetlet.2011.12.105

    Article  Google Scholar 

  • Farràs P, Giovanni CD, Clifford JN, Palomares E, Llobet A (2015) H2 generation and sulfide to sulfoxide oxidation with H2O and sunlight with a model photoelectrosynthesis cell. Coord Chem Rev 304–305:202–208. doi:10.1016/j.ccr.2014.10.007

    Article  Google Scholar 

  • Fielden J, Quasdorf K, Croninc L, Kögerler P (2012) A fluorophosphate-based inverse Keggin structure. Dalton Trans 41:9876–9878. doi:10.1039/C2DT30501A

    Article  Google Scholar 

  • Genovese M, Lian K (2015) Polyoxometalate modified inorganic–organic nanocomposite materials for energy storage applications: a review. Curr Opin Solid State Mater Sci 19:126–137. doi:10.1016/j.cossms.2014.12.002

    Article  Google Scholar 

  • Huang X, Guo W, Wang G, Yang M, Wang Q, Zhang X, Feng Y, Shi Zh, Li Ch (2012) Synthesis of Mo–Fe3O4@SiO2@P4VP core–shell–shell structured magnetic microspheres for alkene epoxidation reactions. Mater Chem Phys 135:985–990. doi:10.1016/j.matchemphys.2012.06.003

    Article  Google Scholar 

  • Le X, Dong Zh, Jin Zh, Wang Q, Ma J (2014) Suzuki-Miyaura cross-coupling reactions catalyzed by efficient and recyclable Fe3O4@SiO2@mSiO2–Pd(II) catalyst. Catal Commun 53:47–52. doi:10.1016/j.catcom.2014.04.025

    Article  Google Scholar 

  • Li W, Deng Y, Wu Z, Qian X, Yang J, Wang Y, Gu D, Zhang F, Tu B, Zhao D (2011) Hydrothermal etching assisted crystallization: a facile route to functional yolk-shell titanate microspheres with ultrathin nanosheets-assembled double shells. J Am Chem Soc 133:15830–15833. doi:10.1021/ja2055287

    Article  Google Scholar 

  • López X, Carbó JJ, Bo C, Poblet JM (2012) Structure, properties and reactivity of polyoxometalates: a theoretical perspective. Chem Soc Rev 41:7537–7571. doi:10.1039/c2cs35168d

    Article  Google Scholar 

  • Lv H, Geletii YV, Zhao Ch, Vickers JW, Zhu G, Luo Z, Song J, Lian T, Musaev DG, Hill CL (2012) Polyoxometalate water oxidation catalysts and the production of green fuel. Chem Soc Rev 41:7572–7589. doi:10.1039/C2CS35292C

    Article  Google Scholar 

  • Mizuno N, Yamaguchi K, Kamata K (2005) Epoxidation of olefins with hydrogen peroxide catalyzed by polyoxometalates. Coord Chem Rev 249:1944–1956. doi:10.1016/j.ccr.2004.11.019

    Article  Google Scholar 

  • Narkhede N, Singh S, Patel A (2015) Recent progress on supported polyoxometalates for biodiesel synthesis via esterification and transesterification. Green Chem 17:89–107. doi:10.1039/C4GC01743A

    Article  Google Scholar 

  • Palermo V, Romanelli GP, Vázquez PG (2013) Mo-based Keggin heteropolyacids as catalysts in the green and selective oxidation of diphenyl sulfide. J Mol Catal A Chem 373:142–150. doi:10.1016/j.molcata.2013.03.002

    Article  Google Scholar 

  • Patel K, Patel A (2012) Functionalization of Keggin type manganese substituted phosphotungstate by R-(−)-1-cyclohexylethylamine: synthesis and characterization. Inorg Chim Acta 382:79–83. doi:10.1016/j.ica.2011.10.017

    Article  Google Scholar 

  • Patel A, Pathan S (2012) Keggin-type cesium salt of first series transition metal-substituted phosphomolybdates: one-pot easy synthesis, structural, and spectral analysis. J Coord Chem 65:3122–3132. doi:10.1080/00958972.2012.710843

    Article  Google Scholar 

  • Rahimi R, Maleki A, Maleki S, Morsali A, Rahimi MJ (2014) Synthesis and characterization of magnetic dichromate hybrid nanomaterials with triphenylphosphine surface modified iron oxide nanoparticles (Fe3O4@SiO2@PPh3@Cr2O72 −). Solid State Sci 28:9–13. doi:10.1016/j.solidstatesciences.2013.11.013

    Article  Google Scholar 

  • Salavati H, Rasouli N (2011) Synthesis and characterization of supported heteropolymolybdate nanoparticles between silicate layers of Bentonite with enhanced catalytic activity for epoxidation of alkenes. Mater Res Bull 46:1853–1859. doi:10.1016/j.materresbull.2011.07.037

    Article  Google Scholar 

  • Srour H, Maux PL, Chevance S, Simonneaux G (2013) Metal-catalyzed asymmetric sulfoxidation, epoxidation and hydroxylation by hydrogen peroxide. Coord Chem Rev 257:3030–3050. doi:10.1016/j.ccr.2013.05.010

    Article  Google Scholar 

  • Sun J, Yu G, Liu L, Li Zh, Kan Q, Huo Q, Guan J (2014) Core–shell structured Fe3O4@SiO2 supported cobalt(II) or copper(II) acetylacetonate complexes: magnetically recoverable nanocatalysts for aerobic epoxidation of styrene. Catal Sci Technol 4:1246–1252. doi:10.1039/C4CY00017J

    Article  Google Scholar 

  • Sutradhar M, Martins LMDRS, Silva MFCG, Pombeiro AJL (2015) Vanadium complexes: recent progress in oxidation catalysis. Coord Chem Rev 301–302:200–239. doi:10.1016/j.ccr.2015.01.020

    Article  Google Scholar 

  • Thompson DJ, Zhang Y, Ren T (2014) Polyoxometalate [γ-SiW10O34(H2O)2]4−on MCM-41 as catalysts for sulfide oxygenation with hydrogen peroxide. J Mol Catal A: Chem 392:188–193. doi:10.1016/j.molcata.2014.05.015

    Article  Google Scholar 

  • Wang S, Yang G (2015) Recent advances in polyoxometalate-catalyzed reactions. Chem Rev 115:4893–4962. doi:10.1021/cr500390v

    Article  Google Scholar 

  • Wu W, He Q, Jiang C (2008) Magnetic iron oxide nanoparticles: synthesis and surface functionalization strategies. Nanoscale Res Lett 3:397–415. doi:10.1007/s11671-008-9174-9

    Article  Google Scholar 

  • Zhang Z, Zhang F, Zhu Q, Zhao W, Ma B, Ding Y (2011) Magnetically separable polyoxometalate catalyst for the oxidation of dibenzothiophene with H2O2. J Colloid Interface Sci 360:189–194. doi:10.1016/j.jcis.2011.04.045

    Article  Google Scholar 

  • Zhou Y, Guo Z, Hou W, Wang Q, Wang J (2015) Polyoxometalate-based phase transfer catalysis for liquid–solid organic reactions: a review. Catal Sci Technol 5:4324–4335. doi:10.1039/C5CY00674K

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the University of Guilan and the Golpayegan University of Technology for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zeinab Moradi-Shoeili.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moradi-Shoeili, Z., Zare, M. & Bagherzadeh, M. Synthesis and characterization of magnetic silica-supported Mn(II)-substituted polyoxophosphotungstate as catalyst in sulfoxidation reaction. J Nanopart Res 18, 298 (2016). https://doi.org/10.1007/s11051-016-3609-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-016-3609-5

Keywords