Advertisement

Chronic exposure to zinc oxide nanoparticles increases ischemic-reperfusion injuries in isolated rat hearts

  • Tamara Milivojević
  • Damjana Drobne
  • Tea Romih
  • Lilijana Bizjak Mali
  • Irena Marin
  • Mojca Lunder
  • Gorazd Drevenšek
Research Paper
  • 138 Downloads

Abstract

The use of zinc oxide nanoparticles (ZnO NPs) in numerous products is increasing, although possible negative implications of their long-term consumption are not known yet. Our aim was to evaluate the chronic, 6-week oral exposure to two different concentrations of ZnO NPs on isolated rat hearts exposed to ischemic-reperfusion injury and on small intestine morphology. Wistar rats of both sexes (n = 18) were randomly divided into three groups: (1) 4 mg/kg ZnO NPs, (2) 40 mg/kg ZnO NPs, and (3) control. After 6 weeks of treatment, the hearts were isolated, the left ventricular pressure (LVP), the coronary flow (CF), the duration of arrhythmias and the lactate dehydrogenase release rate (LDH) were measured. A histological investigation of the small intestine was performed. Chronic exposure to ZnO NPs acted cardiotoxic dose-dependently. ZnO NPs in dosage 40 mg/kg maximally decreased LVP (3.3-fold) and CF (2.5-fold) and increased the duration of ventricular tachycardia (all P < 0.01) compared to control, whereas ZnO NPs in dosage 4 mg/kg acted less cardiotoxic. Goblet cells in the small intestine epithelium of rats, treated with 40 mg ZnO NPs/kg, were enlarged, swollen and numerous, the intestinal epithelium width was increased. Unexpectedly, ZnO NPs in both dosages significantly decreased LDH. A 6-week oral exposure to ZnO NPs dose-dependently increased heart injuries and caused irritation of the intestinal mucosa. A prolonged exposure to ZnO NPs might cause functional damage to the heart even with exposures to the recommended daily doses, which should be tested in future studies.

Keywords

Zinc oxide (ZnO) nanoparticles 6-week treatment Isolated rat heart Ischemic-reperfusion injuries Environmental and health effects 

Notes

Compliance with ethical standards

Conflict of interest

There are no conflicts of interest to declare.

References

  1. Alarifi S, Ali D, Alkahtani S, Verma A, Ahamed M, Ahmed M, Alhadlaq HA (2013) Induction of oxidative stress DNA damage, and apoptosis in a malignant human skin melanoma cell line after exposure to zinc oxide nanoparticles. Int J Nanomedicine 8:983–993. doi: 10.2147/IJN.S42028ijn-8-983 CrossRefGoogle Scholar
  2. Alvarez-Collazo J, Diaz-Garcia CM, Lopez-Medina AI, Vassort G, Alvarez JL (2012) Zinc modulation of basal and beta-adrenergically stimulated L-type Ca2+ current in rat ventricular cardiomyocytes: consequences in cardiac diseases. Pflugers Arch 464:459–470. doi: 10.1007/s00424-012-1162-3 CrossRefGoogle Scholar
  3. Amara S et al (2014) Effects of zinc oxide nanoparticles and/or zinc chloride on biochemical parameters and mineral levels in rat liver and kidney. Hum Exp Toxicol 33:1150–1157. doi: 10.1177/09603271135103270960327113510327 CrossRefGoogle Scholar
  4. Bacchetta R et al (2014) Evidence and uptake routes for Zinc oxide nanoparticles through the gastrointestinal barrier in xenopus laevis. Nanotoxicology 8:728–744. doi: 10.3109/17435390.2013.824128 Google Scholar
  5. Baek M et al (2012) Pharmacokinetics, tissue distribution, and excretion of zinc oxide nanoparticles. Int J Nanomedicine 7:3081–3097. doi: 10.2147/IJN.S32593ijn-7-3081 Google Scholar
  6. Baky NA, Faddah LM, Al-Rasheed NM, Fatani AJ (2013) Induction of inflammation DNA damage and apoptosis in rat heart after oral exposure to zinc oxide nanoparticles and the cardioprotective role of alpha-lipoic acid and vitamin E. Drug Res (Stuttg) 63:228–236. doi: 10.1055/s-0033-1334923 CrossRefGoogle Scholar
  7. Bancroft JD, Gamble M (2008) Theory and practice of histological techniques. Elsevier Health Sciences, Churchill Livingstone, LondonGoogle Scholar
  8. Bondarenko O, Juganson K, Ivask A, Kasemets K, Mortimer M, Kahru A (2013) Toxicity of Ag, CuO and ZnO nanoparticles to selected environmentally relevant test organisms and mammalian cells in vitro: a critical review. Arch Toxicol 87:1181–1200. doi: 10.1007/s00204-013-1079-4 CrossRefGoogle Scholar
  9. Bumbudsanpharoke N, Choi J, Ko S (2015) Applications of nanomaterials in Food packaging. J Nanosci Nanotechnol 15:6357–6372CrossRefGoogle Scholar
  10. Chang Y-N, Zhang M, Xia L, Zhang J, Xing G (2012) The toxic effects and mechanisms of CuO and ZnO nanoparticles. Materials 5:2850. doi: 10.3390/ma5122850 CrossRefGoogle Scholar
  11. Cho WS, Kang BC, Lee JK, Jeong J, Che JH, Seok SH (2013) Comparative absorption, distribution, and excretion of titanium dioxide and zinc oxide nanoparticles after repeated oral administration. Part Fibre Toxicol 10:9. doi: 10.1186/1743-8977-10-9-8977-10-9 CrossRefGoogle Scholar
  12. Chung HE et al (2013) Toxicokinetics of zinc oxide nanoparticles in rats. J Phys Conf Ser 429:1–7. doi: 10.1088/1742-6596/429/1/012037 CrossRefGoogle Scholar
  13. Contado C (2015) Nanomaterials in consumer products: a challenging analytical problem. Front Chem 3:48. doi: 10.3389/fchem.2015.00048 CrossRefGoogle Scholar
  14. Croteau MN, Dybowska AD, Luoma SN, Valsami-Jones E (2011) A novel approach reveals that zinc oxide nanoparticles are bioavailable and toxic after dietary exposures. Nanotoxicology 5:79–90. doi: 10.3109/17435390.2010.501914 CrossRefGoogle Scholar
  15. Curtis MJ et al (2013) The Lambeth conventions (II): guidelines for the study of animal and human ventricular and supraventricular arrhythmias. Pharmacol Ther 139:213–248. doi: 10.1016/j.pharmthera.2013.04.008S0163-7258(13)00087-9 CrossRefGoogle Scholar
  16. De Berardis B, Civitelli G, Condello M, Lista P, Pozzi R, Arancia G, Meschini S (2010) Exposure to ZnO nanoparticles induces oxidative stress and cytotoxicity in human colon carcinoma cells. Toxicol Appl Pharmacol 246:116–127. doi: 10.1016/j.taap.2010.04.012 CrossRefGoogle Scholar
  17. Efeovbokhan N, Bhattacharya SK, Ahokas RA, Sun Y, Guntaka RV, Gerling IC, Weber KT (2014) Zinc and the prooxidant heart failure phenotype. J Cardiovasc Pharmacol 64:393–400. doi: 10.1097/FJC.000000000000012500005344-201410000-00014 CrossRefGoogle Scholar
  18. Esmaeillou M, Moharamnejad M, Hsankhani R, Tehrani AA, Maadi H (2013) Toxicity of ZnO nanoparticles in healthy adult mice. Environ Toxicol Pharmacol 35:67–71. doi: 10.1016/j.etap.2012.11.003S1382-6689(12)00161-5 CrossRefGoogle Scholar
  19. Espitia P, Ndt Soares, Jld Coimbra, de Andrade NL, Cruz R, Medeiros E (2012) Zinc oxide nanoparticles: synthesis antimicrobial activity and food packaging applications. Food Bioprocess Technol 5:1447–1464. doi: 10.1007/s11947-012-0797-6 CrossRefGoogle Scholar
  20. Estrada-Izquierdo I, Sánchez-Espindola E, Uribe-Hernández Rl, Ramón-Gallegos E (2012) Analysis of the impregnation of ZnO:Mn2+ nanoparticles on cigarette filters for trapping polycyclic aromatic hydrocarbons (PAHs). In: AIP conference proceedings, vol 1494, pp 140–142. doi:10.1063/1.4764624Google Scholar
  21. Evangelou A, Kalfakakou V (1993) Electrocardiographic alterations induced by zinc ions on isolated guinea pig heart preparations. Biol Trace Elem Res 36:203–208. doi: 10.1007/BF02783179 CrossRefGoogle Scholar
  22. Fan W, Li Q, Yang X, Zhang L (2013) Zn subcellular distribution in liver of goldfish (carassius auratus) with exposure to zinc oxide nanoparticles and mechanism of hepatic detoxification. PLoS One 8:e78123. doi: 10.1371/journal.pone.0078123 CrossRefGoogle Scholar
  23. Formigari A, Irato P, Santon A (2007) Zinc, antioxidant systems and metallothionein in metal mediated-apoptosis: biochemical and cytochemical aspects. Comp Biochem Physiol C Toxicol Pharmacol 146:443–459. doi: 10.1016/j.cbpc.2007.07.010 CrossRefGoogle Scholar
  24. Golobic M, Jemec A, Drobne D, Romih T, Kasemets K, Kahru A (2012) Upon exposure to Cu nanoparticles, accumulation of copper in the isopod Porcellio scaber is due to the dissolved Cu ions inside the digestive tract. Environ Sci Technol 46:12112–12119. doi: 10.1021/es3022182 CrossRefGoogle Scholar
  25. Guo D, Bi H, Liu B, Wu Q, Wang D, Cui Y (2013) Reactive oxygen species-induced cytotoxic effects of zinc oxide nanoparticles in rat retinal ganglion cells. Toxicol In Vitro 27:731–738. doi: 10.1016/j.tiv.2012.12.001 CrossRefGoogle Scholar
  26. Hsiao IL, Huang YJ (2011) Titanium oxide shell coatings decrease the cytotoxicity of ZnO nanoparticles. Chem Res Toxicol 24:303–313. doi: 10.1021/tx1001892 CrossRefGoogle Scholar
  27. Hua J, Vijver MG, Richardson MK, Ahmad F, Peijnenburg WJ (2014) Particle-specific toxic effects of differently shaped zinc oxide nanoparticles to zebrafish embryos (Danio rerio). Environ Toxicol Chem 33:2859–2868. doi: 10.1002/etc.2758 CrossRefGoogle Scholar
  28. Kang T, Guan R, Chen X, Song Y, Jiang H, Zhao J (2013) In vitro toxicity of different-sized ZnO nanoparticles in Caco-2 cells. Nanoscale Res Lett 8:496. doi: 10.1186/1556-276X-8-496 CrossRefGoogle Scholar
  29. Kao YY, Chen YC, Cheng TJ, Chiung YM, Liu PS (2012) Zinc oxide nanoparticles interfere with zinc ion homeostasis to cause cytotoxicity. Toxicol Sci 125:462–472. doi: 10.1093/toxsci/kfr319kfr319 CrossRefGoogle Scholar
  30. Kim YH et al (2015) Retinopathy induced by zinc oxide nanoparticles in rats assessed by micro-computed tomography and histopathology. Toxicol Res 31:157–163. doi: 10.5487/TR.2015.31.2.157 CrossRefGoogle Scholar
  31. Konduru NV, Murdaugh KM, Sotiriou GA, Donaghey TC, Demokritou P, Brain JD, Molina RM (2014) Bioavailability, distribution and clearance of tracheally-instilled and gavaged uncoated or silica-coated zinc oxide nanoparticles. Part Fibre Toxicol 11:44. doi: 10.1186/s12989-014-0044-6 CrossRefGoogle Scholar
  32. Kuhar P, Lunder M, Drevensek G (2007) The role of gender and sex hormones in ischemic-reperfusion injury in isolated rat hearts. Eur J Pharmacol 561:151–159. doi: 10.1016/j.ejphar.2007.01.043 CrossRefGoogle Scholar
  33. Liu J, Feng X, Wei L, Chen L, Song B, Shao L (2016) The toxicology of ion-shedding zinc oxide nanoparticles. Crit Rev Toxicol 46:348–384. doi: 10.3109/10408444.2015.1137864 CrossRefGoogle Scholar
  34. Ma H, Williams PL, Diamond SA (2013) Ecotoxicity of manufactured ZnO nanoparticles—a review. Environ Pollut 172:76–85. doi: 10.1016/j.envpol.2012.08.011 CrossRefGoogle Scholar
  35. McIntosh R et al (2010) The critical role of intracellular zinc in adenosine A(2) receptor activation induced cardioprotection against reperfusion injury. J Mol Cell Cardiol 49:41–47. doi: 10.1016/j.yjmcc.2010.02.001 CrossRefGoogle Scholar
  36. Moos PJ, Chung K, Woessner D, Honeggar M, Cutler NS, Veranth JM (2010) ZnO particulate matter requires cell contact for toxicity in human colon cancer cells. Chem Res Toxicol 23:733–739. doi: 10.1021/tx900203v CrossRefGoogle Scholar
  37. Nunes AD et al (2014) Manganese ferrite-based nanoparticles induce ex vivo, but not in vivo, cardiovascular effects. Int J Nanomedicine 9:3299–3312. doi: 10.2147/IJN.S64254 Google Scholar
  38. Paek HJ et al (2013) Modulation of the pharmacokinetics of zinc oxide nanoparticles and their fates in vivo. Nanoscale 5:11416–11427. doi: 10.1039/c3nr02140h CrossRefGoogle Scholar
  39. Park HS et al (2014) A 90-day study of sub-chronic oral toxicity of 20 nm positively charged zinc oxide nanoparticles in sprague dawley rats. Int J Nanomedicine 9(Suppl 2):93–107. doi: 10.2147/IJN.S57927 Google Scholar
  40. Pasupuleti S, Alapati S, Ganapathy S, Anumolu G, Pully NR, Prakhya BM (2012) Toxicity of zinc oxide nanoparticles through oral route. Toxicol Ind Health 28:675–686. doi: 10.1177/0748233711420473 CrossRefGoogle Scholar
  41. Piccinno F, Gottschalk F, Seeger S, Nowack B (2012) Industrial production quantities and uses of ten engineered nanomaterials in Europe and the world. J Nanopart Res 14:1–11. doi: 10.1007/s11051-012-1109-9 CrossRefGoogle Scholar
  42. Pipan-Tkalec Z, Drobne D, Jemec A, Romih T, Zidar P, Bele M (2010) Zinc bioaccumulation in a terrestrial invertebrate fed a diet treated with particulate ZnO or ZnCl2 solution. Toxicology 269:198–203. doi: 10.1016/j.tox.2009.08.004 CrossRefGoogle Scholar
  43. Romih T et al (2016) FTIR microscopy reveals distinct biomolecular profile of crustacean digestive glands upon subtoxic exposure to ZnO nanoparticles. Nanotoxicology 10:462–470. doi: 10.3109/17435390.2015.1078853 CrossRefGoogle Scholar
  44. Savoly Z, Hracs K, Pemmer B, Streli C, Zaray G, Nagy PI (2016) Uptake and toxicity of nano-ZnO in the plant-feeding nematode, Xiphinema vuittenezi: the role of dissolved zinc and nanoparticle-specific effects. Environ Sci Pollut Res Int 23:9669–9678. doi: 10.1007/s11356-015-5983-4 CrossRefGoogle Scholar
  45. Schleh C et al (2012) Size and surface charge of gold nanoparticles determine absorption across intestinal barriers and accumulation in secondary target organs after oral administration. Nanotoxicology 6:36–46. doi: 10.3109/17435390.2011.552811 CrossRefGoogle Scholar
  46. Song MK et al (2009) Body weight reduction in rats by oral treatment with zinc plus cyclo-(His-Pro). Br J Pharmacol 158:442–450. doi: 10.1111/j.1476-5381.2009.00201.x CrossRefGoogle Scholar
  47. Stampfl A, Maier M, Radykewicz R, Reitmeir P, Gottlicher M, Niessner R (2011) Langendorff heart: a model system to study cardiovascular effects of engineered nanoparticles. ACS Nano 5:5345–5353. doi: 10.1021/nn200801c CrossRefGoogle Scholar
  48. Tong H, McGee JK, Saxena RK, Kodavanti UP, Devlin RB, Gilmour MI (2009) Influence of acid functionalization on the cardiopulmonary toxicity of carbon nanotubes and carbon black particles in mice. Toxicol Appl Pharmacol 239:224–232. doi: 10.1016/j.taap.2009.05.019 CrossRefGoogle Scholar
  49. Vandebriel RJ, De Jong WH (2012) A review of mammalian toxicity of ZnO nanoparticles. Nanotechnol Sci Appl 5:61–71. doi: 10.2147/NSA.S23932 CrossRefGoogle Scholar
  50. Vasilache V, Popa C, Filote C, Cretu MA, Benta M (2011) Nanoparticles applications for improving the food safety and food processing. Recent 12:77–81Google Scholar
  51. Wang B et al (2006) Acute toxicity of nano- and micro-scale zinc powder in healthy adult mice. Toxicol Lett 161:115–123. doi: 10.1016/j.toxlet.2005.08.007 CrossRefGoogle Scholar
  52. Wang L, Ding W, Zhang F (2010) Acute toxicity of ferric oxide and zinc oxide nanoparticles in rats. J Nanosci Nanotechnol 10:8617–8624CrossRefGoogle Scholar
  53. Wroblewski F, Ladue JS (1955) Lactic dehydrogenase activity in blood. Proc Soc Exp Biol Med 90:210–213CrossRefGoogle Scholar
  54. Yu KN et al (2013) Zinc oxide nanoparticle induced autophagic cell death and mitochondrial damage via reactive oxygen species generation. Toxicol In Vitro 27:1187–1195. doi: 10.1016/j.tiv.2013.02.010 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Tamara Milivojević
    • 1
  • Damjana Drobne
    • 1
  • Tea Romih
    • 1
  • Lilijana Bizjak Mali
    • 1
  • Irena Marin
    • 2
  • Mojca Lunder
    • 2
  • Gorazd Drevenšek
    • 2
    • 3
  1. 1.Department of Biology, Biotechnical FacultyUniversity of LjubljanaLjubljanaSlovenia
  2. 2.Institute of Pharmacology and Experimental Toxicology, Faculty of MedicineUniversity of LjubljanaLjubljanaSlovenia
  3. 3.Faculty of Mathematics, Natural Sciences and Information TechnologiesUniversity of PrimorskaKoperSlovenia

Personalised recommendations