Advertisement

Tribological performance of nanoparticles as lubricating oil additives

  • M. GulzarEmail author
  • H. H. MasjukiEmail author
  • M. A. Kalam
  • M. Varman
  • N. W. M. Zulkifli
  • R. A. Mufti
  • Rehan Zahid
Review

Abstract

The prospect of modern tribology has been expanded with the advent of nanomaterial-based lubrication systems, whose development was facilitated by the nanotechnology in recent years. In literature, a variety of nanoparticles have been used as lubricant additives with potentially interesting friction and wear properties. To date, although there has been a great deal of experimental research on nanoparticles as lubricating oil additives, many aspects of their tribological behavior are yet to be fully understood. With growing number of possibilities, the key question is: what types of nanoparticles act as a better lubricating oil additive and why? To answer this question, this paper reviews main types of nanoparticles that have been used as lubricants additives and outlines the mechanisms by which they are currently believed to function. Significant aspects of their tribological behavior such as dispersion stability and morphology are also highlighted.

Keywords

Nanolubricant Nanoparticles Tribological performance Dispersion stability Lubrication mechanisms Tribo-testing 

Notes

Acknowledgments

The authors would like to thank the University of Malaya, which made this study possible through the high impact research, Project title: “Development of Alternative and Renewable Energy Carrier” UM.C/HIR/MOHE/ENG/60 and Grand Challenge (GC) No: GC001-14AET.

References

  1. Abdullah MIHC, Abdollah MF, Amiruddin H, Tamaldin N, Nuri NRM (2014) Effect of hBN/Al2O3 nanoparticle additives on the tribological performance of engine oil. Jurnal Teknologi 66(3):1–6Google Scholar
  2. Abdullah MIHC, Abdollah MFB, Tamaldin N, Amiruddin H, Mat Nuri NR, Gachot C, Kaleli H (2016) Effect of hexagonal boron nitride nanoparticles as an additive on the extreme pressure properties of engine oil Industrial Lubrication and Tribology 68(4):441–445Google Scholar
  3. Akbulut M (2012) Nanoparticle-based lubrication systems. J Powder Metall Min 2012Google Scholar
  4. Ali MKA, Xianjun H (2015) Improving the tribological behavior of internal combustion engines via the addition of nanoparticles to engine oils. Nanotechnol Rev 4:347–358CrossRefGoogle Scholar
  5. Alves SM, Barros BS, Trajano MF, Ribeiro KSB, Moura E (2013) Tribological behavior of vegetable oil-based lubricants with nanoparticles of oxides in boundary lubrication conditions. Tribol Int 65:28–36. doi: 10.1016/j.triboint.2013.03.027 CrossRefGoogle Scholar
  6. Amiruddin H, Abdollah M, Idris A, Abdullah M, Tamaldin N (2015) Stability of nano-oil by pH control in stationary conditions. Proc Mech Eng Res Day 2015 2015:55–56Google Scholar
  7. Arumugam S, Sriram G (2014) Synthesis and characterization of rapeseed oil bio-lubricant dispersed with nano copper oxide: its effect on wear and frictional behavior of piston ring–cylinder liner combination. Proc Inst Mech Eng Part J 228:1308–1318CrossRefGoogle Scholar
  8. Asrul M, Zulkifli NWM, Masjuki HH, Kalam MA (2013) Tribological properties and lubricant mechanism of nanoparticle in engine oil. Procedia Eng 68:320–325. doi: 10.1016/j.proeng.2013.12.186 CrossRefGoogle Scholar
  9. Azman SSN, Zulkifli NWM, Masjuki H, Gulzar M, Zahid R (2016) Study of tribological properties of lubricating oil blend added with graphene nanoplatelets. J Mater Res. doi: 10.1557/jmr.2016.24 Google Scholar
  10. Bakunin V, Suslov AY, Kuzmina G, Parenago O, Topchiev A (2004) Synthesis and application of inorganic nanoparticles as lubricant components—a review. J Nanopart Res 6:273–284CrossRefGoogle Scholar
  11. Bakunin V, Suslov AY, Kuzmina G, Parenago O (2005) Recent achievements in the synthesis and application of inorganic nanoparticles as lubricant components. Lubr Sci 17:127–145CrossRefGoogle Scholar
  12. Castillo Marcano SJ, Bensaid S, Deorsola FA, Russo N, Fino D (2014) Nanolubricants for diesel engines: related emissions and compatibility with the after-treatment catalysts. Tribol Int 72:198–207. doi: 10.1016/j.triboint.2013.10.018 CrossRefGoogle Scholar
  13. Çelik ON, Ay N, Göncü Y (2013) Effect of nano hexagonal boron nitride lubricant additives on the friction and wear properties of AISI 4140 steel. Part Sci Technol 31:501–506. doi: 10.1080/02726351.2013.779336 CrossRefGoogle Scholar
  14. Chen S, Liu W (2006) Oleic acid capped PbS nanoparticles: synthesis, characterization and tribological properties. Mater Chem Phys 98:183–189. doi: 10.1016/j.matchemphys.2005.09.043 CrossRefGoogle Scholar
  15. Chiñas-Castillo F, Spikes H (2003) Mechanism of action of colloidal solid dispersions. J Tribol 125:552–557CrossRefGoogle Scholar
  16. Cho Y, Park J, Ku B, Lee J, Park W-G, Lee J, Kim SH (2012) Synergistic effect of a coating and nano-oil lubricant on the tribological properties of friction surfaces. Int J Precis Eng Manuf 13:97–102. doi: 10.1007/s12541-012-0013-7 CrossRefGoogle Scholar
  17. Choi Y, Lee C, Hwang Y, Park M, Lee J, Choi C, Jung M (2009) Tribological behavior of copper nanoparticles as additives in oil. Curr Appl Phys 9:e124–e127CrossRefGoogle Scholar
  18. Chou R, Battez AH, Cabello JJ, Viesca JL, Osorio A, Sagastume A (2010) Tribological behavior of polyalphaolefin with the addition of nickel nanoparticles. Tribol Int 43:2327–2332. doi: 10.1016/j.triboint.2010.08.006 CrossRefGoogle Scholar
  19. Dai W, Kheireddin B, Gao H, Liang H (2016) Roles of nanoparticles in oil Lubrication Tribology International. doi: 10.1016/j.triboint.2016.05.020 Google Scholar
  20. Das SK, Bedar A, Kannan A, Jasuja K (2015) Aqueous dispersions of few-layer-thick chemically modified magnesium diboride nanosheets by ultrasonication assisted exfoliation. Sci Rep 5:10522 doi:10.1038/srep10522. http://www.nature.com/articles/srep10522#supplementary-information
  21. Demas NG, Timofeeva EV, Routbort JL, Fenske GR (2012) Tribological effects of BN and MoS2 nanoparticles added to polyalphaolefin oil in piston skirt/cylinder liner tests. Tribol Lett 47:91–102CrossRefGoogle Scholar
  22. Einstein A (1905) On the movement of small particles suspended in a stationary liquid demanded by the molecular-kinetic theory of heart. Annalen der Physik 17:549–560CrossRefGoogle Scholar
  23. Ettefaghi E-O-l, Ahmadi H, Rashidi A, Mohtasebi S-S (2013) Investigation of the anti-wear properties of nano additives on sliding bearings of internal combustion engines. Int J Precis Eng Manuf 14:805–809. doi: 10.1007/s12541-013-0105-z CrossRefGoogle Scholar
  24. Falvo MR, Superfine R (2000) Mechanics and friction at the nanometer scale. J Nanopart Res 2:237–248. doi: 10.1023/a:1010017130136 CrossRefGoogle Scholar
  25. Fernandez J, Viesca J, Hernandez Battez A (2008) Tribological behaviour of copper oxide nanoparticle suspension. Paper presented at the Lubrication Management and Technology Conference and Exhibition, San Sebastian; 2008Google Scholar
  26. Gao C, Wang Y, Hu D, Pan Z, Xiang L (2013) Tribological properties of magnetite nanoparticles with various morphologies as lubricating additives. J Nanopart Res 15:1–10. doi: 10.1007/s11051-013-1502-z Google Scholar
  27. Ghaednia H (2014) An analytical and experimental investigation of nanoparticle lubricants. Auburn, Auburn UniversityGoogle Scholar
  28. Ginzburg B, Shibaev L, Kireenko O, Shepelevskii A, Baidakova M, Sitnikova A (2002) Antiwear effect of fullerene C 6 0 additives to lubricating oils. Russ J Appl Chem 75:1330–1335CrossRefGoogle Scholar
  29. Greco A, Mistry K, Sista V, Eryilmaz O, Erdemir A (2011) Friction and wear behaviour of boron based surface treatment and nano-particle lubricant additives for wind turbine gearbox applications. Wear 271:1754–1760. doi: 10.1016/j.wear.2010.11.060 CrossRefGoogle Scholar
  30. Greenberg R, Halperin G, Etsion I, Tenne R (2004) The effect of WS2 nanoparticles on friction reduction in various lubrication regimes. Tribol Lett 17:179–186CrossRefGoogle Scholar
  31. Gullac B, Akalin O (2010) Frictional characteristics of IF-WS2 nanoparticles in simulated engine conditions. Tribol Trans 53:939–947CrossRefGoogle Scholar
  32. Gulzar M, Masjuki H, Kalam M, Varman M, Mufti R, Zahid R, Yunus R (2015a) AW/EP behavior of WS2 nanoparticles added to vegetable oil-based lubricant. In: Proceedings of Malaysian International Tribology Conference 2015. Malaysian Tribology Society, pp 194–195Google Scholar
  33. Gulzar M et al (2015b) Improving the AW/EP ability of chemically modified palm oil by adding CuO and MoS2 nanoparticles. Tribol Int 88:271–279. doi: 10.1016/j.triboint.2015.03.035 CrossRefGoogle Scholar
  34. Hernandez Battez A, Fernandez Rico JE, Navas Arias A, Viesca Rodriguez JL, Chou Rodriguez R, Diaz Fernandez JM (2006) The tribological behaviour of ZnO nanoparticles as an additive to PAO6. Wear 261:256–263. doi: 10.1016/j.wear.2005.10.001 CrossRefGoogle Scholar
  35. Hernández Battez A, González R, Felgueroso D, Fernández JE, del Rocío Fernández M, García MA, Peñuelas I (2007) Wear prevention behaviour of nanoparticle suspension under extreme pressure conditions. Wear 263:1568–1574. doi: 10.1016/j.wear.2007.01.093 CrossRefGoogle Scholar
  36. Hernández Battez A et al (2008a) CuO, ZrO2 and ZnO nanoparticles as antiwear additive in oil lubricants. Wear 265:422–428CrossRefGoogle Scholar
  37. Hernández Battez A et al (2008b) CuO, ZrO2 and ZnO nanoparticles as antiwear additive in oil lubricants. Wear 265:422–428. doi: 10.1016/j.wear.2007.11.013 CrossRefGoogle Scholar
  38. Hu ZS, Lai R, Lou F, Wang LG, Chen ZL, Chen GX, Dong JX (2002) Preparation and tribological properties of nanometer magnesium borate as lubricating oil additive. Wear 252:370–374. doi: 10.1016/S0043-1648(01)00862-6 CrossRefGoogle Scholar
  39. Hu KH, Huang F, Hu XG, Xu YF, Zhou YQ (2011) Synergistic effect of nano-MoS2 and anatase nano-TiO2 on the lubrication properties of MoS2/TiO2 nano-clusters. Tribol Lett 43:77–87CrossRefGoogle Scholar
  40. Jatti VS, Singh TP (2015) Copper oxide nano-particles as friction-reduction and anti-wear additives in lubricating oil. J Mech Sci Technol 29:793–798. doi: 10.1007/s12206-015-0141-y CrossRefGoogle Scholar
  41. Jiao D, Zheng S, Wang Y, Guan R, Cao B (2011) The tribology properties of alumina/silica composite nanoparticles as lubricant additives. Appl Surf Sci 257:5720–5725. doi: 10.1016/j.apsusc.2011.01.084 CrossRefGoogle Scholar
  42. Joly-Pottuz L, Vacher B, Ohmae N, Martin JM, Epicier T (2008) Anti-wear and friction reducing mechanisms of carbon nano-onions as lubricant additives. Tribol Lett 30:69–80. doi: 10.1007/s11249-008-9316-3 CrossRefGoogle Scholar
  43. Kalin M, Kogovšek J, Remškar M (2012) Mechanisms and improvements in the friction and wear behavior using MoS2 nanotubes as potential oil additives. Wear 280–281:36–45. doi: 10.1016/j.wear.2012.01.011 CrossRefGoogle Scholar
  44. Kheireddin BA (2013) Tribological properties of nanopartice-based lubrication systems. Texas A&M University, College StationGoogle Scholar
  45. Kolodziejczyk L, Martinez-Martinez D, Rojas T, Fernandez A, Sanchez-Lopez J (2007) Surface-modified Pd nanoparticles as a superior additive for lubrication. J Nanopart Res 9:639–645CrossRefGoogle Scholar
  46. Koshy CP, Rajendrakumar PK, Thottackkad MV (2015) Evaluation of the tribological and thermo-physical properties of coconut oil added with MoS2 nanoparticles at elevated temperatures. Wear 330–331:288–308. doi: 10.1016/j.wear.2014.12.044 CrossRefGoogle Scholar
  47. Kumar Dubey M, Bijwe J, Ramakumar S (2013) PTFE based nano-lubricants. Wear 306:80–88CrossRefGoogle Scholar
  48. Laad M, Jatti VKS (2016) Titanium oxide nanoparticles as additives in engine oil. J King Saud Univ Eng SciGoogle Scholar
  49. Lee C-G, Hwang Y-J, Choi Y-M, Lee J-K, Choi C, Oh J-M (2009a) A study on the tribological characteristics of graphite nano lubricants. Int J Precis Eng Manuf 10:85–90CrossRefGoogle Scholar
  50. Lee J et al (2009b) Application of fullerene-added nano-oil for lubrication enhancement in friction surfaces. Tribol Int 42:440–447CrossRefGoogle Scholar
  51. Lee K, Hwang Y, Cheong S, Choi Y, Kwon L, Lee J, Kim SH (2009c) Understanding the role of nanoparticles in nano-oil lubrication. Tribol Lett 35:127–131. doi: 10.1007/s11249-009-9441-7 CrossRefGoogle Scholar
  52. Lee K, Hwang Y, Cheong S, Kwon L, Kim S, Lee J (2009d) Performance evaluation of nano-lubricants of fullerene nanoparticles in refrigeration mineral oil. Curr Appl Phys 9:e128–e131CrossRefGoogle Scholar
  53. Li B, Wang X, Liu W, Xue Q (2006) Tribochemistry and antiwear mechanism of organic–inorganic nanoparticles as lubricant additives. Tribol Lett 22:79–84CrossRefGoogle Scholar
  54. Li W, Zheng S, Cao B, Ma S (2011) Friction and wear properties of ZrO2/SiO2 composite nanoparticles. J Nanopart Res 13:2129–2137. doi: 10.1007/s11051-010-9970-x CrossRefGoogle Scholar
  55. Liu G, Li X, Qin B, Xing D, Guo Y, Fan R (2004) Investigation of the mending effect and mechanism of copper nano-particles on a tribologically stressed surface. Tribol Lett 17:961–966. doi: 10.1007/s11249-004-8109-6 CrossRefGoogle Scholar
  56. Liu G, Li X, Lu N, Fan R (2005) Enhancing AW/EP property of lubricant oil by adding nano Al/Sn particles. Tribol Lett 18:85–90. doi: 10.1007/s11249-004-1760-0 CrossRefGoogle Scholar
  57. Luo T, Wei X, Huang X, Huang L, Yang F (2014) Tribological properties of Al2O3 nanoparticles as lubricating oil additives. Ceram Int 40:7143–7149. doi: 10.1016/j.ceramint.2013.12.050 CrossRefGoogle Scholar
  58. Ma S, Zheng S, Cao D, Guo H (2010) Anti-wear and friction performance of ZrO2 nanoparticles as lubricant additive. Particuology 8:468–472. doi: 10.1016/j.partic.2009.06.007 CrossRefGoogle Scholar
  59. Martin JM, Ohmae N (2008) Nanolubricants, vol 13. John Wiley & Sons, New YorkCrossRefGoogle Scholar
  60. Min Y, Akbulut M, Kristiansen K, Golan Y, Israelachvili J (2008) The role of interparticle and external forces in nanoparticle assembly. Nat Mater 7:527–538CrossRefGoogle Scholar
  61. Nallasamy P, Saravanakumar N, Nagendran S, Suriya E, Yashwant D (2014) Tribological investigations on MoS2-based nanolubricant for machine tool slideways. Proc Inst Mech Eng Part J. doi: 10.1177/1350650114556394 Google Scholar
  62. Ohmae N, Martin JM, Mori S (2005) Micro and nanotribology. ASME Press, New YorkCrossRefGoogle Scholar
  63. Padgurskas J, Rukuiza R, Prosyčevas I, Kreivaitis R (2013) Tribological properties of lubricant additives of Fe, Cu and Co nanoparticles. Tribol Int 60:224–232. doi: 10.1016/j.triboint.2012.10.024 CrossRefGoogle Scholar
  64. Pavlidou S, Papaspyrides CD (2008) A review on polymer–layered silicate nanocomposites. Prog Polym Sci 33:1119–1198. doi: 10.1016/j.progpolymsci.2008.07.008 CrossRefGoogle Scholar
  65. Peña-Parás L, Taha-Tijerina J, Garza L, Maldonado-Cortés D, Michalczewski R, Lapray C (2015) Effect of CuO and Al2O3 nanoparticle additives on the tribological behavior of fully formulated oils. Wear 332–333:1256–1261. doi: 10.1016/j.wear.2015.02.038 CrossRefGoogle Scholar
  66. Peng DX, Chen CH, Kang Y, Chang YP, Chang SY (2010a) Size effects of SiO2 nanoparticles as oil additives on tribology of lubricant. Ind Lubr Tribol 62:111–120. doi: 10.1108/00368791011025656 CrossRefGoogle Scholar
  67. Peng DX, Kang Y, Chen SK, Shu FC, Chang YP (2010b) Dispersion and tribological properties of liquid paraffin with added aluminum nanoparticles. Ind Lubr Tribol 62:341–348. doi: 10.1108/00368791011076236 CrossRefGoogle Scholar
  68. Rabaso P (2014) Nanoparticle-doped lubricants: potential of Inorganic Fullerene-like (IF-) molybdenum disulfide for automotive applications. INSA de LyonGoogle Scholar
  69. Rabaso P et al (2014) Boundary lubrication: influence of the size and structure of inorganic fullerene-like MoS2 nanoparticles on friction and wear reduction. Wear 320:161–178. doi: 10.1016/j.wear.2014.09.001 CrossRefGoogle Scholar
  70. Ran X, Yu X, Zou Q (2016) Effect of particle concentration on tribological properties of ZnO nanofluids. Tribol Trans. doi: 10.1080/10402004.2016.1154233 Google Scholar
  71. Rapoport L, Bilik Y, Feldman Y, Homyonfer M, Cohen S, Tenne R (1997) Hollow nanoparticles of WS 2 as potential solid-state lubricants. Nature 387:791–793CrossRefGoogle Scholar
  72. Rapoport L, Leshchinsky V, Lvovsky M, Nepomnyashchy O, Volovik Y, Tenne R (2002) Mechanism of friction of fullerenes. Ind Lubr Tribol 54:171–176CrossRefGoogle Scholar
  73. Rapoport L et al (2003) Tribological properties of WS2 nanoparticles under mixed lubrication. Wear 255:785–793. doi: 10.1016/s0043-1648(03)00044-9 CrossRefGoogle Scholar
  74. Reeves CJ (2013) An experimental investigation characterizing the tribological performance of natural and synthetic biolubricants composed of carboxylic acids for energy conservation and sustainability. The University of Wisconsin-Milwaukee, MilwaukeeGoogle Scholar
  75. Saidur R, Kazi S, Hossain M, Rahman M, Mohammed H (2011) A review on the performance of nanoparticles suspended with refrigerants and lubricating oils in refrigeration systems. Renew Sustain Energy Rev 15:310–323CrossRefGoogle Scholar
  76. Schiøtz J, Jacobsen KW (2003) A maximum in the strength of nanocrystalline copper. Science 301:1357–1359CrossRefGoogle Scholar
  77. Sgroi M et al (2015) Friction reduction benefits in valve-train system using IF-MoS2 added engine oil. Tribol Trans 58:207–214. doi: 10.1080/10402004.2014.960540 CrossRefGoogle Scholar
  78. Shahnazar S, Bagheri S, Hamid SBA (2016) Enhancing lubricant properties by nanoparticle additives. Int J Hydrog Energy 41:3153CrossRefGoogle Scholar
  79. Singh KGK, Suresh R (2012) Behavior of composite nanofluids under extreme pressure condition. In: International Journal of Engineering Research and Technology, vol 9. ESRSA PublicationsGoogle Scholar
  80. Song X, Zheng S, Zhang J, Li W, Chen Q, Cao B (2012) Synthesis of monodispersed ZnAl2O4 nanoparticles and their tribology properties as lubricant additives. Mater Res Bull 47:4305–4310CrossRefGoogle Scholar
  81. Spikes H (2015) Friction modifier additives. Tribol Lett 60:1–26CrossRefGoogle Scholar
  82. Su Y, Gong L, Chen D (2015) An investigation on tribological properties and lubrication mechanism of graphite nanoparticles as vegetable based oil additive. J Nanomater 2015:7. doi: 10.1155/2015/276753 Google Scholar
  83. Sui T, Song B, Zhang F, Yang Q (2015) Effect of particle size and ligand on the tribological properties of amino functionalized hairy silica nanoparticles as an additive to polyalphaolefin. J Nanomater 2015:9. doi: 10.1155/2015/492401 CrossRefGoogle Scholar
  84. Sui T, Song B, Zhang F, Yang Q (2016) Effects of functional groups on the tribological properties of hairy silica nanoparticles as an additive to polyalphaolefin RSC. Advances 6:393–402Google Scholar
  85. Sunqing Q, Junxiu D, Guoxu C (1999) Tribological properties of CeF3 nanoparticles as additives in lubricating oils. Wear 230:35–38CrossRefGoogle Scholar
  86. Tao X, Jiazheng Z, Kang X (1996) The ball-bearing effect of diamond nanoparticles as an oil additive. J Phys D Appl Phys 29:2932CrossRefGoogle Scholar
  87. Tevet O, Von-Huth P, Popovitz-Biro R, Rosentsveig R, Wagner HD, Tenne R (2011) Friction mechanism of individual multilayered nanoparticles. Proc Natl Acad Sci 108:19901–19906CrossRefGoogle Scholar
  88. Thakur MRN, Srinivas DV, Jain DAK (2016) Anti-wear, anti-friction and extreme pressure properties of motor bike engine oil dispersed with molybdenum disulphide nano-particles. Tribol Trans. doi: 10.1080/10402004.2016.1142034 Google Scholar
  89. Thottackkad MV, Perikinalil RK, Kumarapillai PN (2012) Experimental evaluation on the tribological properties of coconut oil by the addition of CuO nanoparticles. Int J Precis Eng Manuf 13:111–116. doi: 10.1007/s12541-012-0015-5 CrossRefGoogle Scholar
  90. Verma A, Jiang W, Abu Safe HH, Brown WD, Malshe AP (2008) Tribological behavior of deagglomerated active inorganic nanoparticles for advanced lubrication. Tribol Trans 51:673–678. doi: 10.1080/10402000801947691 CrossRefGoogle Scholar
  91. Viesca J, Hernández Battez A, González R, Chou R, Cabello JJ (2011a) Antiwear properties of carbon-coated copper nanoparticles used as an additive to a polyalphaolefin. Tribol Int 44:829–833CrossRefGoogle Scholar
  92. Viesca JL, Hernández Battez A, González R, Chou R, Cabello JJ (2011b) Antiwear properties of carbon-coated copper nanoparticles used as an additive to a polyalphaolefin. Tribol Int 44:829–833. doi: 10.1016/j.triboint.2011.02.006 CrossRefGoogle Scholar
  93. Wan Q, Jin Y, Sun P, Ding Y (2014) Rheological and tribological behaviour of lubricating oils containing platelet MoS2 nanoparticles. J Nanopart Res 16:1–9CrossRefGoogle Scholar
  94. Wan Q, Jin Y, Sun P, Ding Y (2015) Tribological behaviour of a lubricant oil containing boron nitride nanoparticles. Procedia Eng 102:1038–1045. doi: 10.1016/j.proeng.2015.01.226 CrossRefGoogle Scholar
  95. Wang X-B, Liu W-M (2013) Nanoparticle-based lubricant additives. In: Encyclopedia of tribology. Berlin, Springer, pp 2369–2376Google Scholar
  96. Weertman J (1993) Hall-Petch strengthening in nanocrystalline metals. Mater Sci Eng A 166:161–167CrossRefGoogle Scholar
  97. Wu YY, Tsui WC, Liu TC (2007) Experimental analysis of tribological properties of lubricating oils with nanoparticle additives. Wear 262:819–825. doi: 10.1016/j.wear.2006.08.021 CrossRefGoogle Scholar
  98. Xiaodong Z, Xun F, Huaqiang S, Zhengshui H (2007) Lubricating properties of Cyanex 302-modified MoS2 microspheres in base oil 500SN. Lubr Sci 19:71–79CrossRefGoogle Scholar
  99. Xie H, Jiang B, He J, Xia X, Pan F (2015) Lubrication performance of MoS2 and SiO2 nanoparticles as lubricant additives in magnesium alloy-steel contacts. Tribol Int. doi: 10.1016/j.triboint.2015.08.009 Google Scholar
  100. Yadgarov L, Petrone V, Rosentsveig R, Feldman Y, Tenne R, Senatore A (2013) Tribological studies of rhenium doped fullerene-like MoS2 nanoparticles in boundary, mixed and elasto-hydrodynamic lubrication conditions. Wear 297:1103–1110. doi: 10.1016/j.wear.2012.11.084 CrossRefGoogle Scholar
  101. Ye W, Cheng T, Ye Q, Guo X, Zhang Z, Dang H (2003) Preparation and tribological properties of tetrafluorobenzoic acid-modified TiO2 nanoparticles as lubricant additives. Mater Sci Eng A 359:82–85CrossRefGoogle Scholar
  102. Yu H-l, Xu Y, Shi P-J, Xu B-S, Wang X-L, Liu Q (2008) Tribological properties and lubricating mechanisms of Cu nanoparticles in lubricant. Trans Nonferrous Metals Soc China 18:636–641. doi: 10.1016/S1003-6326(08)60111-9 CrossRefGoogle Scholar
  103. Yu W, Xie H (2012) A review on nanofluids: preparation, stability mechanisms, and applications. J Nanomater 2012:1Google Scholar
  104. Zainal N, Zulkifli N, Yusoff M, Masjuki H, Yunus R (2015) The feasibility study of CaCO3 derived from cockleshell as nanoparticle in chemically modified lubricant. In: Proceedings of Malaysian international tribology conference 2015. Malaysian Tribology Society, pp 209-210Google Scholar
  105. Zhang Y, Xu Y, Yang Y, Zhang S, Zhang P, Zhang Z (2015) Synthesis and tribological properties of oil-soluble copper nanoparticles as environmentally friendly lubricating oil additives. Ind Lubr Tribol 67:227–232. doi: 10.1108/ILT-10-2012-0098 CrossRefGoogle Scholar
  106. Zhao Y, Zhang Z, Dang H (2004) Fabrication and tribological properties of Pb nanoparticles. J Nanopart Res 6:47–51. doi: 10.1023/B:NANO.0000023223.79545.af CrossRefGoogle Scholar
  107. Zhou J, Wu Z, Zhang Z, Liu W, Xue Q (2000) Tribological behavior and lubricating mechanism of Cu nanoparticles in oil. Tribol Lett 8:213–218CrossRefGoogle Scholar
  108. Zhu J, Bi H, Wang Y, Wang X, Yang X, Lu L (2008) CuO nanocrystals with controllable shapes grown from solution without any surfactants. Mater Chem Phys 109:34–38CrossRefGoogle Scholar
  109. Zhu D, Li X, Wang N, Wang X, Gao J, Li H (2009) Dispersion behavior and thermal conductivity characteristics of Al2O3–H2O nanofluids. Curr Appl Phys 9:131–139CrossRefGoogle Scholar
  110. Zin V, Agresti F, Barison S, Colla L, Fabrizio M (2015) Influence of Cu, TiO2 nanoparticles and carbon nano-horns on tribological properties of engine oil. J Nanosci Nanotechnol 15:3590–3598. doi: 10.1166/jnn.2015.9839 CrossRefGoogle Scholar
  111. Zulkifli NWM, Kalam MA, Masjuki HH, Yunus R (2013) Experimental analysis of tribological properties of biolubricant with nanoparticle additive. Procedia Eng 68:152–157. doi: 10.1016/j.proeng.2013.12.161 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • M. Gulzar
    • 1
    • 2
    Email author
  • H. H. Masjuki
    • 1
    Email author
  • M. A. Kalam
    • 1
  • M. Varman
    • 1
  • N. W. M. Zulkifli
    • 1
  • R. A. Mufti
    • 2
  • Rehan Zahid
    • 1
    • 2
  1. 1.Department of Mechanical Engineering, Faculty of Engineering, Centre for Energy SciencesUniversity of MalayaKuala LumpurMalaysia
  2. 2.National University of Sciences and Technology (NUST)IslamabadPakistan

Personalised recommendations