Skip to main content
Log in

How to determine the morphology of plasmonic nanocrystals without transmission electron microscopy?

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

This paper reports the complete ellipsometric characterization of gold nanoparticles (NPs) embedded in a photoresist films. The effective dielectric function of nanocomposite films as well as the shape distribution and the volume fraction of NPs are extracted from ellipsometric measurements by introducing an effective medium theory which takes into account the NP shape distribution and the intrinsic confinement effect. This theory remains valid as long as the nanoparticle interaction is negligible. We show that the magnitude of the confinement depends on the nanoparticle shape and the environment through chemical damping. This suggests that the NP shape distribution can be directly estimated by ellipsometry, while the determination of absolute radius distribution requires transmission electron microscopy measurements. The imaginary part of the effective dielectric function exhibits a strong asymmetric surface plasmon band, while a large variation of the real part occurs close to the resonance. The redshift and the broadening of the plasmon band as the gold volume fraction increases are correlated to the evolution of NP shape distribution. This evolution is attributed to a competition between the nucleation and the coalescence of NPs. This unambiguously demonstrates that ellipsometry combined with a shape-distributed effective medium theory is a powerful alternative tool to transmission electron microscopy for the NP shape analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aldeanueva-Potel P, Faoucher E, Alvarez-Puebla RA, Liz-Marzán LM, Brust M (2009) Recyclable molecular trapping and SERS detection in silver-Loaded agarose gels with Dynamic hot spots. Anal Chem 81:9233–9238

    Article  Google Scholar 

  • Azzam RMA, Bashara NM (1977) Ellipsometry and Polarized Light. North-Holland Publishing Company, Amsterdam

    Google Scholar 

  • Battie Y, Destouches N, Chassagneux F, Jamon D, Bois L, Moncoffre N, Toulhoat N (2011) Optical properties of silver nanoparticles thermally grown in a mesostructured hybrid silica film. Opt Mater Express 1:1019–1033

    Article  Google Scholar 

  • Battie Y, En Naciri A, Chamorro W, Horwat D (2014a) Generalized effective medium theory to extract the optical properties of two-dimensional nonspherical metallic nanoparticle layers. J Phys Chem C 118:4899

    Article  Google Scholar 

  • Battie Y, Resano-Garcia A, Chaoui N, Zhang Y, En Naciri A (2014b) Extended Maxwell-Garnett-Mie formulation applied to size dispersion of metallic nanoparticles embedded in host liquid matrix. J Chem Phys 140:044705

    Article  Google Scholar 

  • Battie Y, Resano-Garcia A, En Naciri A, Akil S, Chaoui N (2015) Determination of morphological characteristics of metallic nanoparticles based on modified Maxwell-Garnett fitting of optical responses. Appl Phys Lett 107:143104

    Article  Google Scholar 

  • Biswas A, Aktasa OC, Kanzowa J, Saeeda U, Strunskusb T, Zaporojtchenkoa V, Faupela F (2004) Polymer-metal optical nanocomposites with tunable particle plasmon resonance prepared by vapor phase co-deposition. Mater Lett 58:1530–1534

    Article  Google Scholar 

  • Bohren CF, Huffman DR (1998) Absorption and scattering by a sphere. In: absorption and scattering of light by small particles. Wiley, Weinheim

  • Charlé KP, Frank F, Schulze W (1984) The optical properties of silver microcrystallites in dependance on size and the influence of the matrix environment. Ber Bunsenges Phys Chem 88:350

    Article  Google Scholar 

  • Coronado EA, Schatz GC (2003) Surface plasmon broadening for arbitrary shape nanoparticles: A geometrical probability approach. J Chem Phys 119:3926–3934

    Article  Google Scholar 

  • Destouches N, Battie Y, Crespo-Monteiro N, Chassagneux F, Bois L, Bakhti S, Vocanson F, Toulhoat N, Moncoffre N, Epicier T (2013) Photo-directed organization of silver nanoparticles in mesostructured silica and titania films. J Nanopart Res 15:1–10

    Article  Google Scholar 

  • Evlyukhin AB, Reinhardt C, Urs Zywietz U, Chichkov BN (2012) Collective resonances in metal nanoparticle arrays with dipole-quadrupole interactions. Phys Rev B 85:245411

    Article  Google Scholar 

  • Gao L, Li Z (2003) Effective medium approximation for two-component nonlinear composites with shape distribution. J Phys: Condens Matter 15:4397

    Google Scholar 

  • Goncharenko AV (2003) Generalizations of the Bruggeman equation and a concept of shape-distributed particle composites. Phys Rev E 68:041108

    Article  Google Scholar 

  • Goncharenko AV (2004) Spectral density function approach to homogenization of binary mixtures. Chem Phys Lett 400:462–468

    Article  Google Scholar 

  • Goncharenko AV, Pinchuk AO (2014) Broadband epsilon-near-zero composites made of metal nanospheroids. Opt Mater Express 4:1276–1286

    Article  Google Scholar 

  • Goncharenko AV, Venger EF (2004) Percolation threshold for Bruggeman composites. Phys Rev E 70:057102

    Article  Google Scholar 

  • Goncharenko AV, Lozovski VZ, Venger EF (2001) Effective dielectric response of a shape-distributed particle system. J Phys: Condens Matter 13:8217

    Google Scholar 

  • Gradess R, Abargues R, Habbou A, Canet-Ferrer J, Pedrueza E, Russell A, Valdés JL, Martínez-Pastor JP (2009) Localized surface plasmon resonance sensor based on Ag-PVA nanocomposite thin films. J Mater Chem 19:9233–9240

    Article  Google Scholar 

  • Guzatov DV, Vaschenko SV, Stankevich VV, Lunevich AY, Glukhov YF, Gaponenko SV (2012) Plasmonic enhancement of molecular fluorescence near silver nanoparticles: theory, modeling, and experiment. J Phys Chem C 116:10723–10733

    Article  Google Scholar 

  • Hedayati MK, Javaherirahim M, Mozooni B, Abdelaziz R, Tavassolizadeh A, Chakravadhanula VSK, Zaporojtchenko V, Strunkus T, Faupel F, Elbahr M (2011) Design of a perfect black absorber at visible frequencies using plasmonic metamaterials. Adv Mater 23:5410–5414

    Article  Google Scholar 

  • Hohenester U, Krenn J (2005) Surface plasmon resonances of single and coupled metallic nanoparticles: A boundary integral method approach. Phys Rev B 72:195429

    Article  Google Scholar 

  • Hövel H, Fritz S, Hilger A, Kreibig U, Vollmer M (1993) Width of cluster plasmon resonances: bulk dielectric functions and chemical interface damping. Phys Rev B 48:18178

    Article  Google Scholar 

  • Ishikawa A, Tanaka T (2012) Two-photon fabrication of three-dimensional metallic nanostructures for plasmonic metamaterials. J Laser Micro Nanoen 7:11–15

    Article  Google Scholar 

  • Keita AS, Naciri AE (2011) Size distribution dependence of the dielectric function of Si quantum dots described by a modified Maxwell-Garnett formulation. Phys Rev B 84:125436

    Article  Google Scholar 

  • Keita AS, En Naciri A, Battie Y, Delachat F, Carrada M, Ferblantier G, Slaoui A (2014) Determination of the optical properties and size dispersion of Si nanoparticles within a dielectric matrix by spectroscopic ellipsometry. J Appl Phys 116:103520

    Article  Google Scholar 

  • Kinnan MK, Kachan S, Kn Simmons C, Chumanov G (2009) Plasmon coupling in two-dimensional arrays of silver nanoparticles: I. effect of the dielectric medium. J Phys Chem C 113:7079–7084

    Article  Google Scholar 

  • Kreibig U (2008) Interface-induced dephasing of Mie plasmon polaritons. Appl Phys B 9:79–89

    Article  Google Scholar 

  • Kreibig U, Vollmer M (1995) Optical properties of metal clusters. Berlin, Springer

    Book  Google Scholar 

  • Kronig RDL (1926) On the theory of the dispersion of X-rays. J Opt Soc Am 12:547–557

    Article  Google Scholar 

  • Kubacka A, Cerrada ML, Serrano C, Fernández-García M, Ferrer M, Fernández-Garcia M (2009) Plasmonic nanoparticle/polymer nanocomposites with enhanced photocatalytic antimicrobial properties. J Phys Chem C 113:9182–9190

    Article  Google Scholar 

  • Kuila BK, Garai A, Nandi AK (2007) Synthesis, optical, and electrical characterization of organically soluble silver nanoparticles and their poly(3-hexylthiophene) nanocomposites: Enhanced luminescence property in the nanocomposite thin films. Chem Mater 19:5443–5452

    Article  Google Scholar 

  • Levenberg KA (1944) Method for the solution of certain problems in least squares. Q Appl Math 2:164–168

    Google Scholar 

  • Liu Y, Mills EN, Composto RJ (2009) Tuning optical properties of gold nanorods in polymer films through thermal reshaping. J Mater Chem 19:2704–2709

    Article  Google Scholar 

  • Losurdo M, Bergmair M, Bruno G, Cattelan D, Cobet C, De Martino A, Feischer K, Dohceviv-Mitrovic Z, Esser N, Galliet M, Gajic R, Hemzal D, Hingerl K, Humlicek J, Ossikovski R, Popovic ZV, Saxl O (2009) Spectrocopic ellipsometry and polarimetry for materials and systems analysis at the nanometer scale: state of the art potential, and perspectives. J Nanopart Res 11:1521–1554

    Article  Google Scholar 

  • Marques-Hueso J, Abargues R, Valdés JL, Martínez-Pastor JP (2010) Ag and Au/DNQ-novolac nanocomposites patternable by ultraviolet lithography: a fast route to plasmonic sensor microfabrication. J Mater Chem 20:7436–7443

    Article  Google Scholar 

  • Misra N, Kumar V, Goel NK, Varshney L (2015) Radiation synthesized poly(n-vinyl-2-pyrrolidone)-stabilized-gold nanoparticles as LSPR-based optical sensor for mercury ions estimation. J Nanopart Res 7:279

    Article  Google Scholar 

  • Myroshnychenko V, Rodrıguez-Fernandez J, Pastoriza-Santos I, Funston AM, Novo C, Mulvaney P, Liz-Marzan LM, Garcıa de Abajo FJ (2008) Modelling the optical response of gold nanoparticles. Chem Soc Rev 37:1792–1805

    Article  Google Scholar 

  • Naciri AE, Miska P, Keita AS, Battie Y, Rinnert H, Vergnat M (2013) Optical properties of uniformly sized silicon nanocrystals within a single silicon oxide layer. J Nanopart Res 15:1–9

    Article  Google Scholar 

  • Oates TWH (2006) Real time spectroscopic ellipsometry of nanoparticle growth. Appl Phys Lett 88:213115

    Article  Google Scholar 

  • Oates TWH, Christalle E (2007) Real-time spectroscopic ellipsometry of silver nanoparticle formation in poly (vinyl alcohol) thin films. J Phys Chem C 111:182–187

    Article  Google Scholar 

  • Oates TWH, Mücklich A (2005) Evolution of plasmon resonances during plasma deposition of silver nanoparticles. Nanotechnology 16:2606

    Article  Google Scholar 

  • Oates TWH, Wormeester H, Arwin H (2011) Characterization of plasmonic effects in thin films and metamaterials using spectroscopic ellipsometry. Prog Surf Sci 86:328–376

    Article  Google Scholar 

  • Pacios R, Marcilla R, Pozo-Gonzalo C, Pomposo JA, Grande H, Aizpurua J, Mecerreyes D (2007) Combined electrochromic and plasmonic optical responses in conducting polymer/metal nanoparticle films. J Nanosci Nanotechnol 7:2938–2941

    Article  Google Scholar 

  • Palik ED (1985) Handbook of Optical Constants of Solids. Academic press handbook series, NewYork

    Google Scholar 

  • Pandey S, Goswami GK, Nanda KK (2012) Green synthesis of biopolymer-silver nanoparticle nanocomposite: An optical sensor for ammonia detection. Int J Biol Macromol 51:583–589

    Article  Google Scholar 

  • Pecharroman C, Della Gaspera E, Martucci A, Escobar-Galindod R, Mulvaney P (2015) Determination of the optical constants of gold nanoparticles from thin-film spectra. J Phys Chem C 119:9450–9459

    Article  Google Scholar 

  • Persechini L, Verre R, McAlinden N, Wang JJ, Ranjan M, Facsko S, Shvets IV, McGilp JF (2014) An analytic approach to modeling the optical response of anisotropic nanoparticle arrays at surfaces and interfaces. J Phys: Condens Matter 26:145302

    Google Scholar 

  • Qu S, Songa Y, Dub C, Wanga Y, Gaoa Y, Liua S, Lib Y, Zhu D (2004) Nonlinear optical properties in three novel nanocomposites with gold nanoparticles. Opt Comm 196:317–323

    Article  Google Scholar 

  • Ranjan M (2013) Predicting plasmonic coupling with Mie-Gans theory in silver nanoparticle arrays. J Nanopart Res 15:1908

    Article  Google Scholar 

  • Reddy KR, Lee KP, Lee Y, Gopalan AI (2008) Facile synthesis of conducting polymer-metal hybrid nanocomposite by in situ chemical oxidative polymerization with negatively charged metal nanoparticles. Mater Lett 62:1815–1818

    Article  Google Scholar 

  • Resano-Garcia A, Battie Y, En Naciri A, Akil S, Chaoui N (2015) Experimental and theoretical determination of the plasmonic responses and shape distribution of colloidal metallic nanoparticles. J Chem Phys 142:134108

    Article  Google Scholar 

  • Sandu T (2012) Shape effects on localized surface plasmons resonances in metallic nanoparticles. J Nanopart Res 14:905

    Article  Google Scholar 

  • Shukla S, Vidal X, Furlani EP, Swihart TM, Kim KT, Yoon YK, Urbas A, Prasad PN (2011) Subwavelength direct laser patterning of conductive gold nanostructures by simultaneous photopolymerization and photoreduction. ACS Nano 5:1947–1957

    Article  Google Scholar 

  • Takele H, Schürmann U, Greve H, Paretkar D, Zaporojtchenko V, Faupel F (2006) Controlled growth of Au nanoparticles in co-evaporated metal/polymer composite films and their optical and electrical properties. Eur Phys J App. Phys 33:83–89

    Article  Google Scholar 

  • Tamboli MS, Kulkarni MV, Patil RH, Gade WN, Navale SC, Kale BB (2012) Nanowires of silver-polyaniline nanocomposite synthesized via in situ polymerization and its novel functionality as an antibacterial agent. Colloid Surf B 92:35–41

    Article  Google Scholar 

  • Toudert J, Babonneau D, Simonot L, Cameli S, Girardeau T (2008) Quantitative modelling of the surface plasmon resonances of metal nanoclusters sandwiched between dielectric layers: the influence of nanocluster size, shape and organization. Nanotechnology 19:125709

    Article  Google Scholar 

  • Toudert J, Simonot L, Camelio S, Babonneau D (2012) Advanced optical effective medium modeling for a single layer of polydisperse ellipsoidal nanoparticles embedded in a homogeneous dielectric medium: surface plasmon resonances. Phys Rev B 86:045415

    Article  Google Scholar 

  • Yang P, Kawasaki K, Ando M, Murase N (2012) Au/SiO2/QD core/shell/shell nanostructures with plasmonic-enhanced photoluminescence. J Nanopart Res 14:1025

    Article  Google Scholar 

  • Yousif BB, Samra AS (2013) Optical responses of plasmonic gold nanoantennas through numerical simulation. J Nanopart Res 15:1341

    Article  Google Scholar 

Download references

Acknowledgments

Financial support of the “Conseil régional Champagne-Ardenne”, NanoMat (http://www.nanomat.eu) by the “Ministère de l’enseignement supérieur et de la recherche” is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yann Battie.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Battie, Y., Izquierdo-Lorenzo, I., Resano-Garcia, A. et al. How to determine the morphology of plasmonic nanocrystals without transmission electron microscopy?. J Nanopart Res 18, 217 (2016). https://doi.org/10.1007/s11051-016-3533-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-016-3533-8

Keywords

Navigation