Advertisement

Exposure assessment of workplace manufacturing titanium dioxide particles

  • Huadong Xu
  • Lin Zhao
  • Zhangjian Chen
  • Jingwen Zhou
  • Shichuan Tang
  • Fanling Kong
  • Xinwei Li
  • Ling Yan
  • Ji ZhangEmail author
  • Guang JiaEmail author
Research Paper

Abstract

With the widespread use of titanium dioxide (TiO2) human exposure is inevitable, but the exposure data on TiO2 are still limited. This study adopted off-line filter-based sampling combined with real-time activity-based monitoring to measure the concentrations in a workplace manufacturing TiO2 (primary diameter: 194 ± 108 nm). Mass concentrations (MCs) of aerosol particles in the packaging workshop (total dust: 3.17 mg/m3, nano dust: 1.22 mg/m3) were much higher than those in the milling workshop (total dust: 0.79 mg/m3, nano dust: 0.31 mg/m3) and executive office (total dust: 0.44 mg/m3, nano dust: 0.19 mg/m3). However, the MCs of TiO2 were at a relatively low level in the packaging workshop (total TiO2: 46.4 μg/m3, nano TiO2: 16.7 μg/m3) and milling workshop (total TiO2: 39.4 μg/m3, nano TiO2: 19.4 μg/m3) by ICP-MS. The number concentration (NC), surface area concentration (SAC) of aerosol particles potentially deposited in alveolar (SACA), and tracheobronchial (SACTB) regions of lungs in the packaging workshop were (1.04 ± 0.89) × 105 particles/cm3, 414.49 ± 395.07, and 86.01 ± 83.18 μm2/cm3, respectively, which were all significantly higher than those of the milling workshop [(0.12 ± 0.40) × 105 particles/cm3, 75.38 ± 45.23, and 17.60 ± 9.22 μm2/cm3, respectively] as well as executive office and outdoor background (p < 0.05). Activity-related characteristics were found in both workshops, and the time-variant characteristics showed very similar trends for 3 days in the packaging workshop. Our study provides important data of TiO2 particles exposure in the workplace.

Keywords

Titanium dioxide Nanomaterials Exposure assessment Workplace Occupational health 

Notes

Acknowledgments

This research was supported by the Key Project of the National 12th-five Year Research Program of China (2014BAI12B04).

Compliance with ethical standards

Conflicts of interest

The authors declare that there are no conflicts of interest.

References

  1. Baan R, Straif K, Grosse Y, Secretan W, El Ghissassi F, Cogliano V (2006) Carcinogenicity of carbon black, titanium dioxide, and talc. Lancet Oncol 7(4):295–296CrossRefGoogle Scholar
  2. Barberio G, Scalbi S, Buttol P, Masoni P, Righi S (2014) Combining life cycle assessment and qualitative risk assessment: the case study of alumina nanofluid production. Sci Total Environ 496:122–131CrossRefGoogle Scholar
  3. Benbrahim-Tallaa L, Baan RA, Grosse Y, Lauby-Secretan B, El Ghissassi F, Bouvard V, Guha N, Loomis D, Straif K (2012) Carcinogenicity of diesel-engine and gasoline-engine exhausts and some nitroarenes. Lancet Oncol 13(7):663–664CrossRefGoogle Scholar
  4. Brouwer D (2010) Exposure to manufactured nanoparticles in different workplaces. Toxicology 269(2–3):120–127CrossRefGoogle Scholar
  5. Brouwer DH (2012) Control banding approaches for nanomaterials. Ann Occup Hyg 56(5):506–514Google Scholar
  6. Brouwer D, van Duuren-Stuurman B, Berges M, Jankowska E, Bard D, Mark D (2009) From workplace air measurement results toward estimates of exposure? Development of a strategy to assess exposure to manufactured nano-objects. J Nanopart Res 11:1867–1881CrossRefGoogle Scholar
  7. Chen Z, Wang Y, Ba T, Li Y, Pu J, Chen T, Song Y, Gu Y, Qian Q, Yang J, Jia G (2014) Genotoxic evaluation of titanium dioxide nanoparticles in vivo and in vitro. Toxicol Lett 226(3):314–319CrossRefGoogle Scholar
  8. Chen R, Shi X, Bai R, Rang W, Huo L, Zhao L, Long D, Pui DYH, Chen C (2015) Airborne nanoparticle pollution in a wire electrical discharge machining workshop and potential health risks. Aerosol Air Qual Res 15(1):284Google Scholar
  9. Demou E, Stark WJ, Hellweg S (2009) Particle emission and exposure during nanoparticle synthesis in research laboratories. Ann Occup Hyg 53(8):829–838CrossRefGoogle Scholar
  10. Fujitani Y, Kobayashi T, Arashidani K, Kunugita N, Suemura K (2008) Measurement of the physical properties of aerosols in a fullerene factory for inhalation exposure assessment. J Occup Environ Hyg 5(6):380–389CrossRefGoogle Scholar
  11. GBZ 2.1–2007 (2007) Occupational exposure limits for hazardous agents in theworkplace. China, Chemical Hazardous AgentsGoogle Scholar
  12. Hendrikx B, van Broekhuizen P (2013) Nano reference values in the Netherlands. Gefahrst Reinhalt Luft 73(10):407–414Google Scholar
  13. Hsu L, Chein H (2007) Evaluation of nanoparticle emission for TiO2 nanopowder coating materials. J Nanopart Res 9(1):157–163CrossRefGoogle Scholar
  14. Ibaseta N, Biscans B (2007) Ultrafine aerosol emission from the free fall of TiO2 and SiO2 Nanopowders. Kona Powder Part 25:190–204CrossRefGoogle Scholar
  15. Japan Society for Occupational Health (JSOH) (2014) Recommendation of occupational exposure limits (2015–2016). J Occup Health 57(4):394–417Google Scholar
  16. Jayjock MA, Hawkins NC (1993) A proposal for improving the role of exposure modeling in risk assessment. Am Ind Hyg Assoc J 54(12):733–741CrossRefGoogle Scholar
  17. Johnston H, Pojana G, Zuin S, Jacobsen NR, Moller P, Loft S, Semmler-Behnke M, McGuiness C, Balharry D, Marcomini A, Wallin H, Kreyling W, Donaldson K, Tran L, Stone V (2013) Engineered nanomaterial risk. Lessons learnt from completed nanotoxicology studies: potential solutions to current and future challenges. Crit Rev Toxicol 43(1):1–20CrossRefGoogle Scholar
  18. Kobayashi N, Naya M, Endoh S, Maru J, Yamamoto K, Nakanishi J (2009) Comparative pulmonary toxicity study of nano-TiO2 particles of different sizes and agglomerations in rats: different short- and long-term post-instillation results. Toxicology 264(1–2):110–118CrossRefGoogle Scholar
  19. Koivisto AJ, Lyyranen J, Auvinen A, Vanhala E, Hameri K, Tuomi T, Jokiniemi J (2012) Industrial worker exposure to airborne particles during the packing of pigment and nanoscale titanium dioxide. Inhal Toxicol 24(12):839–849CrossRefGoogle Scholar
  20. Kuhlbusch TA, Asbach C, Fissan H, Gohler D, Stintz M (2011) Nanoparticle exposure at nanotechnology workplaces: a review. Part Fibre Toxicol 8:22CrossRefGoogle Scholar
  21. Leavey A, Fang J, Sahu M, Biswas P (2013) Comparison of measured particle lung-deposited surface area concentrations by an Aerotrak 9000 using size distribution measurements for a range of combustion aerosols. Aerosol Sci Tech 47(9):966–978CrossRefGoogle Scholar
  22. Lee JH, Kwon M, Ji JH, Kang CS, Ahn KH, Han JH, Yu IJ (2011) Exposure assessment of workplaces manufacturing nanosized TiO2 and silver. Inhal Toxicol 23(4):226–236CrossRefGoogle Scholar
  23. Liou S, Tsai CSJ, Pelclova D, Schubauer-Berigan MK, Schulte PA (2015) Assessing the first wave of epidemiological studies of nanomaterial workers. J Nanopart Res 17(10):413CrossRefGoogle Scholar
  24. National Institute for Occupational Safety and Health (NIOSH) (2011) NIOSH current intelligence bulletin 63: occupational exposure to titanium dioxide. http://www.cdc.gov/niosh/docs/2011-160/pdfs/2011-160.pdf. Accessed 20 Apr 2016
  25. Nel A, Xia T, Mädler L, Li N (2006) Tox potential of materials at the nanolevel. Science 311:622–627CrossRefGoogle Scholar
  26. Pelclova D, Barosova H, Kukutschova J, Zdimal V, Navratil T, Fenclova Z, Vlckova S, Schwarz J, Zikova N, Kacer P, Komarc M, Belacek J, Zakharov S (2015) Raman microspectroscopy of exhaled breath condensate and urine in workers exposed to fine and nano TiO2 particles: a cross-sectional study. J Breath Res 9(3):36008CrossRefGoogle Scholar
  27. Pelclova D, Zdimal V, Fenclova Z, Vlckova S, Turci F, Corazzari I, Kacer P, Schwarz J, Zikova N, Makes O, Syslova K, Komarc M, Belacek J, Navratil T, Machajova M, Zakharov S (2016) Markers of oxidative damage of nucleic acids and proteins among workers exposed to TiO2 (nano) particles. Occup Environ Med 73(2):110–118CrossRefGoogle Scholar
  28. Qiu J (2012) Nano-safety studies urged in China. Nature 489(7416):350CrossRefGoogle Scholar
  29. Rauscher H, Roebben G, Amenta V, Sanfeliu AB, Calzolai L, Emons H, Gaillard C, Gibson N, Linsinger T, Mech A, Pesudo LQ, Rasmussen K, Sintes JR, Sokull-Klüttgen B, Stamm H (2014) Towards a review of the EC Recommendation for a definition of the term “nanomaterial”—Part 1. Compilation of information concerning the experience with the definition. JRC scientific and policy report, Ispra. http://www.mychemicalmonitoring.eu/dap/files/JRC_nano-definition_report1.pdf. Accessed 19 Apr 2016
  30. Research and Markets (2015) Global and Chinese titanium dioxide industry report, 2015–2018. http://www.researchandmarkets.com/research/mj9q42/global_and. Accessed 10 Apr 2016
  31. Roursgaard M, Jensen KA, Poulsen SS, Jensen NE, Poulsen LK, Hammer M, Nielsen GD, Larsen ST (2011) Acute and subchronic airway inflammation after intratracheal instillation of quartz and titanium dioxide agglomerates in mice. Sci World J 11:801–825CrossRefGoogle Scholar
  32. Sha B, Gao W, Cui X, Wang L, Xu F (2015) The potential health challenges of TiO2 nanomaterials. J Appl Toxicol 35(10):1086–1101CrossRefGoogle Scholar
  33. Shi H, Magaye R, Castranova V, Zhao J (2013) Titanium dioxide nanoparticles: a review of current toxicological data. Part Fibre Toxicol 10(1):15CrossRefGoogle Scholar
  34. Silva RM, Teesy C, Franzi L, Weir A, Westerhoff P, Evans JE, Pinkerton KE (2013) Biological response to nano-scale titanium dioxide (TiO2): role of particle dose, shape, and retention. J Toxicol Environ Health A 76(16):953–972CrossRefGoogle Scholar
  35. Theissmann R, Kluwig M, Koch T (2014) A reproducible number-based sizing method for pigment-grade titanium dioxide. Beilstein J Nanotechnol 5:1815–1822CrossRefGoogle Scholar
  36. van Broekhuizen P, van Broekhuizen F, Cornelissen R, Reijnders L (2012) Workplace exposure to nanoparticles and the application of provisional nanoreference values in times of uncertain risks. J Nanopart Res 14(4):1–25Google Scholar
  37. Warheit DB (2013) How to measure hazards/risks following exposures to nanoscale or pigment-grade titanium dioxide particles. Toxicol Lett 220(2):193–204CrossRefGoogle Scholar
  38. Xing M, Zhang Y, Zou H, Quan C, Chang B, Tang S, Zhang M (2015) Exposure characteristics of ferric oxide nanoparticles released during activities for manufacturing ferric oxide nanomaterials. Inhal Toxicol 27(3):138–148CrossRefGoogle Scholar
  39. Zhen S, Qian Q, Jia G, Zhang J, Chen C, Wei Y (2012) A panel study for cardiopulmonary effects produced by occupational exposure to inhalable titanium dioxide. J Occup Environ Med 54(11):1389–1394CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Huadong Xu
    • 1
  • Lin Zhao
    • 1
  • Zhangjian Chen
    • 1
  • Jingwen Zhou
    • 2
  • Shichuan Tang
    • 3
  • Fanling Kong
    • 4
  • Xinwei Li
    • 2
  • Ling Yan
    • 2
  • Ji Zhang
    • 2
    Email author
  • Guang Jia
    • 1
    • 5
    Email author
  1. 1.Department of Occupational and Environmental Health Sciences, School of Public HealthPeking UniversityBeijingPeople’s Republic of China
  2. 2.Jinan Center for Disease Control and PreventionJinanPeople’s Republic of China
  3. 3.Beijing Key Laboratory of Occupational Safety and HealthBeijing Municipal Institute of Labor ProtectionBeijingPeople’s Republic of China
  4. 4.Shandong Center for Disease Control and PreventionJinanPeople’s Republic of China
  5. 5.Institute of Environmental HealthPeking UniversityBeijingPeople’s Republic of China

Personalised recommendations