Photoactive nanocomplex formed from chlorophyll assembly on TMA-coated iron oxide nanoparticles

  • Sibel Barbaros
  • Zeynep Meray
  • Tuğba Tecim
  • Rükan Genç
Research Paper


In this study, hierarchical self-assembly of photocatalytic nanodisks through non-covalent interactions between spinach-extracted chlorophyll molecules and trimethylammonium hydroxide-coated magnetic iron oxide nanoparticles was discussed. Combination of chlorophyll molecules with iron oxide nanoparticles generated an alteration in light absorption at both visible and near-IR region with accompanying enhancement in fluorescence emission. Further, photocatalytic role of resulting molecular assembly was studied by means of the photoinduced degradation of methylene blue dye under UV light and direct sun irradiation at neutral pH. In order to enhance the long-term stability of the hybrid nanocatalyst, commercially available cellulose membrane was used as a support and magnetic recovery and reusability was achieved where the nanocatalyst retained more than 90 % of its efficiency even after four cycles. This simple strategy could initiate the development of new materials for wastewater treatment including membrane-based technologies. On the other hand, their sunlight-induced photocatalytic activity could easily be conducted to dye-synthesized solar cells or their enhanced photoluminescence can provide a strong basis for future bioimaging tools.

Graphical Abstract


Nanocomposites Magnetic nanoparticles Photocatalyst Photodegradation Metallorganic frameworks Nanostructured membranes 



This study was partially supported by TUBITAK 2209-A–Research Projects Support Program for Undergraduate Students.

Supplementary material

11051_2016_3496_MOESM1_ESM.docx (2.1 mb)
Supplementary material 1 (DOCX 2191 kb)


  1. Andrade ÂL, Fabris JD, Ardisson JD et al (2012) Effect of tetramethylammonium hydroxide on nucleation, surface modification and growth of magnetic nanoparticles. J Nanomater 2012:1–10. doi: 10.1155/2012/454759 Google Scholar
  2. Arnon DI (1949) Copper enzyme polyphenoloxides in isolated chloroplast Polyphenolexidase in Beta vulgaris. Plant Physiol 24:1–15. doi: 10.1104/pp.24.1.1 CrossRefGoogle Scholar
  3. Barka N, Qourzal S, Assabbane A et al (2010) Photocatalytic degradation of an azo reactive dye, Reactive Yellow 84, in water using an industrial titanium dioxide coated media. Arab J Chem 3:279–283. doi: 10.1016/j.arabjc.2010.06.016 CrossRefGoogle Scholar
  4. Blanco-Andujar C, Ortega D, Pankhurst QA, Thanh NTK (2012) Elucidating the morphological and structural evolution of iron oxide nanoparticles formed by sodium carbonate in aqueous medium. J Mater Chem 22:12498. doi: 10.1039/c2jm31295f CrossRefGoogle Scholar
  5. Boruah PK, Borthakur P, Darabdhara G et al (2016) Sunlight assisted degradation of dye molecules and reduction of toxic Cr(vi) in aqueous medium using magnetically recoverable Fe 3 O 4/reduced graphene oxide nanocomposite. RSC Adv 6:11049–11063. doi: 10.1039/C5RA25035H CrossRefGoogle Scholar
  6. Chalasani R, Vasudevan S (2013) Cyclodextrin-functionalized Fe3O4@TiO2: reusable, magnetic nanoparticles for photocatalytic degradation of endocrine-disrupting chemicals in water supplies. ACS Nano 7:4093–4104. doi: 10.1021/nn400287k CrossRefGoogle Scholar
  7. Dashwood R, Yamane S, Larsen R (1996) Study of the forces stabilizing complexes between chlorophylls and heterocyclic amine mutagens. Environ Mol Mutagen 218:211–218. doi: 10.1002/(SICI)1098-2280(1996)27:3<211::AID-EM6>3.0.CO;2-H CrossRefGoogle Scholar
  8. Devmalkar VS, Murumkar CV, Salunkhe SM, Chavan S (2014) Studies on pigment chlorophyll isolation and estimation of different bryophytes for their biochemical properties. J Nat Prod Plant Resour 4:56–61Google Scholar
  9. Erten-Ela S, Ocakoglu K, Tarnowska A et al (2015) Performance of zinc chlorophyll based molecules for dye sensitized solar cell. Dye Pigment 114:129–137. doi: 10.1016/j.dyepig.2014.11.008 CrossRefGoogle Scholar
  10. Garg P, Carpenter K, Chong S, Christodoulou J (2013) A pilot study of the effect of (E, E)-2, 4-undecadienal on the offensive odour of trimethylamine. JIMD Rep. 8:11–15. doi: 10.1007/8904_2012_149
  11. Gerola AP, Tsubone TM, Santana A et al (2011) Properties of chlorophyll and derivatives in homogeneous and microheterogeneous systems. J Phys Chem B 115:7364–7373. doi: 10.1021/jp201278b CrossRefGoogle Scholar
  12. Houas A, Lachheb H, Ksibi M et al (2001) Photocatalytic degradation pathway of methylene blue in water. Appl Catal B Environ 31:145–157. doi: 10.1016/S0926-3373(00)00276-9 CrossRefGoogle Scholar
  13. Kelley RF, Tauber MJ, Wasielewski MR (2006) Intramolecular electron transfer through the 20-position of a chlorophyll a derivative: an unexpectedly Efficient conduit for charge transport. J Am Chem Soc 128:4779–4791. doi: 10.1021/ja058233j CrossRefGoogle Scholar
  14. Kim J-H, Kim S-M, Kim Y-I (2014) Properties of magnetic nanoparticles prepared by co-precipitation. J Nanosci Nanotechnol 14:8739–8744. doi: 10.1166/jnn.2014.9993 CrossRefGoogle Scholar
  15. Ma S, Zhan S, Jia Y, Zhou Q (2015) Superior antibacterial activity of Fe3O4–TiO2 Nanosheets under solar light. ACS Appl Mater Interfaces 7:21875–21883. doi: 10.1021/acsami.5b06264 CrossRefGoogle Scholar
  16. Ocakoglu K, Krupnik T, van den Bosch B et al (2014) Photosystem I-based biophotovoltaics on nanostructured hematite. Adv Funct Mater 24:7467–7477. doi: 10.1002/adfm.201401399 CrossRefGoogle Scholar
  17. Pegu R, Majumdar KJ, Talukdar DJ, Pratihar S (2014) Oxalate capped iron nanomaterial: from methylene blue degradation to bis(indolyl)methane synthesis. RSC Adv 4:33446. doi: 10.1039/C4RA04214J CrossRefGoogle Scholar
  18. Ren Q, Zou H, Liang M et al (2014) Preparation and characterization of amphoteric polycarboxylate and the hydration mechanism study used in portland cement. RSC Adv 4:44018–44025. doi: 10.1039/C4RA05542J CrossRefGoogle Scholar
  19. Röger C, Miloslavina Y, Brunner D, Holzwarth AR, Würthner F (2008) J Am Chem Soc 130(18):5929–5939. doi: 10.1021/ja710253q CrossRefGoogle Scholar
  20. Shaban YA (2013) Enhanced photocatalytic removal of methylene blue From seawater under natural sunlight using carbon-modified n-TiO2 nanoparticles. Environ Pollut 3:41. doi: 10.5539/ep.v3n1p41 CrossRefGoogle Scholar
  21. Shan S, Lai W, Xiong Y et al (2015) Novel strategies to enhance lateral flow immunoassay sensitivity for detecting foodborne pathogens. J Agric Food Chem 63:745–753. doi: 10.1021/jf5046415 CrossRefGoogle Scholar
  22. Siefermann-harms D (1987) a/b-protein In: Siegenthaler P-A, Murata N (eds) Lipids in photosynthesis: structure, function and genetics, Springer Science & Business Media, p 303–313Google Scholar
  23. Štarha P, Smola D, Tuček J, Trávníček Z (2015) Efficient synthesis of a maghemite/gold hybrid nanoparticle system as a magnetic carrier for the transport of platinum-based metallotherapeutics. Int J Mol Sci 16:2034–2051. doi: 10.3390/ijms16012034 CrossRefGoogle Scholar
  24. Stockett MH, Musbat L, Kjær C et al (2015) The Soret absorption band of isolated chlorophyll a and b tagged with quaternary ammonium ions. Phys Chem Chem Phys 17:25793–25798. doi: 10.1039/c5cp01513h CrossRefGoogle Scholar
  25. Subramanian V, Wolf E, Kamat PV (2001) Semiconductor-metal composite nanostructures. To what extent do metal nanoparticles improve the photocatalytic activity of TiO2 films? J Phys Chem B 105:11439–11446. doi: 10.1021/jp011118k CrossRefGoogle Scholar
  26. Sung YJ, Suk H-J, Sung HY et al (2013) Novel antibody/gold nanoparticle/magnetic nanoparticle nanocomposites for immunomagnetic separation and rapid colorimetric detection of Staphylococcus aureus in milk. Biosens Bioelectron 43:432–439. doi: 10.1016/j.bios.2012.12.052 CrossRefGoogle Scholar
  27. Talelli M, Rijcken CJF, Lammers T et al (2009) Superparamagnetic iron oxide nanoparticles encapsulated in biodegradable thermosensitive polymeric micelles: toward a targeted nanomedicine suitable for image-guided drug delivery. Langmuir Acs J Surf Colloids 25:2060–2067. doi:10.1021/la8036499CrossRefGoogle Scholar
  28. Tronto J, Bordonal AC, Naal Z, Valim JB (2013) Conducting polymers/layered double hydroxides intercalated nanocomposites. In: Mastai Y (ed) Materials science - advanced topics, InTech,  pp 3–30Google Scholar
  29. Wang AZ, Bagalkot V, Vasilliou CC et al (2008) Superparamagnetic iron oxide nanoparticle-aptamer bioconjugates for combined prostate cancer imaging and therapy. ChemMedChem 3:1311–1315. doi: 10.1002/cmdc.200800091 CrossRefGoogle Scholar
  30. Wei H, Insin N, Lee J et al (2012) Compact zwitterion-coated iron oxide nanoparticles for biological applications. Nano Lett 12:22–25. doi: 10.1021/nl202721q CrossRefGoogle Scholar
  31. Wu W, Jiang Changzhong, Roy VAL (2015) Recent progress in magnetic iron oxide-semiconductor composite nanomaterials as promising photocatalysts. Nanoscale 7:38–58. doi: 10.1039/c4nr04244a Google Scholar
  32. Yan Q, Luo Z, Cai K et al (2014) Chemical designs of functional photoactive molecular assemblies. Chem Soc Rev 43:4199. doi: 10.1039/c3cs60375j CrossRefGoogle Scholar
  33. Yang X, Chen W, Huang J et al (2015) Rapid degradation of methylene blue in a novel heterogeneous Fe3O4 @rGO@TiO2-catalyzed photo-fenton system. Sci Rep 5:10632. doi: 10.1038/srep10632 CrossRefGoogle Scholar
  34. Zhang H, Ming H, Lian S et al (2011) Fe2O3/carbon quantum dots complex photocatalysts and their enhanced photocatalytic activity under visible light. Dalton Trans 40:10822–10825. doi: 10.1039/c1dt11147g CrossRefGoogle Scholar
  35. Zhuang L, Tang J, Wang Y et al (2015) Conductive iron oxide minerals accelerate syntrophic cooperation in methanogenic benzoate degradation. J Hazard Mater 293:37–45. doi: 10.1016/j.jhazmat.2015.03.039 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Functional Nanomaterials Laboratory, Chemical Engineering Department, Engineering FacultyMersin UniversityMersinTurkey
  2. 2.Advanced Technology Research and Application CenterMersin UniversityMersinTurkey

Personalised recommendations