Skip to main content
Log in

Biocompatible silver nanoparticles embedded in a PEG–PLA polymeric matrix for stimulated laser light drug release

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

The laser-induced release of a well-known hepatoprotective drug (silibinin, SLB) from a temperature-sensitive polymeric composite loaded with silver nanoparticles (Ag NPs) was investigated. The surface chemistry tuning and the specific design of Ag NPs are fundamental in view of the engineering of specific stimuli-responsive systems, able to control drug release in response to external stimuli. The release profiles of SLB from the newly synthesized PEG–PLA@Ag composite show strong dependences on laser wavelength and Ag NPs’ Surface Plasmon Resonance (SPR). The resonant laser light excites the SPR of the NPs and the absorbed energy is converted into heat due to electron–photon collisions. The heat generated from the nanometer-sized metal particles embedded within the polymer is efficient and strongly localized. The nanovector, irradiated by a relatively low-intensity laser but tuned specifically to the metal NPs’ SPR, releases the encapsulated drug with a higher efficiency than that not irradiated or irradiated with a laser wavelength far from the metal SPR. A combination of analytical techniques including UV–Vis, NMR, and FT-IR spectroscopy and scanning/transmission electron microscopy has been used to study the structural and morphological properties of the composite. The controllable specificity of this approach and the possibility of the SPR-mediated localized photothermal effect to be usefully applied in aqueous environments are the relevant advances of the proposed system for photothermal therapies that make use of visible optical radiation or for the drug delivery in proximity of the tumor cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Agrawal SK, Sanabria-DeLong N, Coburn JM, Tew GN, Bhatia SR (2006) Novel drug release profiles from micellar solutions of PLA-PEG-PLA triblock copolymers. J Controlled Release 112:64–71

    Article  Google Scholar 

  • Amendola V, Meneghetti M (2009) Laser ablation synthesis in solution and size manipulation of noble metal nanoparticles. Phys Chem Chem Phys 11:3805–3821

    Article  Google Scholar 

  • Balan L, Malval JP, Schneider R, Le Nouen D, Lougnot DJ (2010) In-situ fabrication of polyacrylate–silver nanocomposite through photoinduced tandem reactions involving eosin dye. Polymer 51:1363–1369

    Article  Google Scholar 

  • Bazile D, Couvreur P, Lakkireddy HR, Mackiewicz N, Nicolas J (2013) Functional pla-peg copolymers, the nanoparticles thereof, their preparation and use for targeted drug delivery and imaging WO 2013127949 A1. http://www.google.com/patents/WO2013127949A1?cl=en

  • Biswas A, Aktas OC, Schurmann U, Saeed U, Zaporojtchenko V, Faupel F (2004) Tunable multiple plasmon resonance wavelengths response from multicomponent polymer–metal nanocomposite systems. Appl Phys Lett 84:2655–2657

    Article  Google Scholar 

  • Burt HM, Zhang X, Toleikis P, Embree L, Hunter WL (1999) Development of copolymers of poly(d,l-lactide) and methoxypolyethylene glycol as micelles carriers of paclitaxel. Colloids Surf B 16:161–171

    Article  Google Scholar 

  • Cao G (2004) Nanostructures & nanomaterials: synthesis properties & applications. Imperial College Press

  • Caseri W (2000) Nanocomposites of polymers and metals or semiconductors: historical background and optical properties. Macromol Rapid Commun 21:705–722

    Article  Google Scholar 

  • Chaloupka K, Malam Y, Seifalian AM (2010) Nanosilver as a new generation of nanoproduct in biomedical applications. Trends Biotechnol 28(11):580–588

    Article  Google Scholar 

  • Compton J, Thompson D, Kranbuehl D, Ohl S, Gain O, David L, Espuche E (2006) Hybrid films of polyimide containing in situ generated silver or palladium nanoparticles: effect of the particle precursor and of the processing conditions on the morphology and the gas permeability. Polymer 47:5303–5313

    Article  Google Scholar 

  • Eksik O, Tasdelen MA, Erciyes AT, Yagci Y (2010) In situ synthesis of oil-based polymer/silver nanocomposites by photoinduced electron transfer and free radical polymerization processes. Compos Interfaces 17:357–369

    Article  Google Scholar 

  • Fan FRF, Bard AJ (2002) Chemical, electrochemical, gravimetric, and microscopic studies on antimicrobial silver films. J Phys Chem B 106:279–287

    Article  Google Scholar 

  • Fazio E, Neri F (2013) Nonlinear optical effects from Au nanoparticles prepared by laser plasmas in water. Appl Surf Sci 272:88–93

    Article  Google Scholar 

  • Fazio E, Neri F, Ossi PM, Santo N, Trusso S (2009) Growth process of nanostructured silver films pulsed laser ablated in high-pressure inert gas. Appl Surf Sci 255:9676–9679

    Article  Google Scholar 

  • Fazio E, Scala A, Grimato S, Ridolfo A, Grassi G, Neri F (2015) Laser light triggered smart release of silibinin from a PEGylated–PLGA gold nanocomposite. J Mater Chem B 3:9023–9032

    Article  Google Scholar 

  • Huang YY, Chung TW (2001) Microencapsulation of gentamicin in biodegradable PLA and/or PLA/PEG copolymer. J Microencapsulation 18(4):457–465

    Article  Google Scholar 

  • Itina TE (2011) On nanoparticle formation by laser ablation in liquids. J Phys Chem C 115(12):5044–5048

    Article  Google Scholar 

  • Jeong Y-IL, Kim DH, Chung CW, Yoo J-J, Choi KH, Kim CH, Ha SH, Kang DH (2011) Doxorubicin-incorporated polymeric micelles composed of dextran-b-poly(dl-lactide-co-glycolide) copolymer. Int J Nanomed 6:1415–1427

  • Kim DH, Kim MD, Choi CW, Chung CW, Ha SH, Kim CH, Shim YH, Jeong YI, Kang DH (2012) Antitumor activity of sorafenib-incorporated nanoparticles of dextran/poly(dl-lactide-coglycolide) block copolymer. Nanoscale Res Lett 7:91 (6 pp)

  • Krishna Rao KSV, Ramasubba Reddy P, Yong-Ill L, Kim C (2012) Synthesis and characterization of chitosan–PEG–Ag nanocomposites for antimicrobial application. Carbohydr Polym 87:920–925

    Article  Google Scholar 

  • Lee KC, Lin SJ (2008) Size effect of Ag nanoparticles on surface plasmon resonance. Surf Coat Technol 202:5339–5342

    Article  Google Scholar 

  • Lee J, Cho EC, Cho K (2004) Incorporation and release behavior of hydrophobic drug in functionalized poly(d,l-lactide)-block-poly(ethylene oxide) micelles. J Controll Release 94:323–335

    Article  Google Scholar 

  • Lentini G, Fazio E, Calabrese F, De Plano LM, Puliafico M, Franco D, Nicolò MS, Carnazza S, Trusso S, Allegra A, Neri F, Musolino C, Guglielmino SPP (2015) Phage-AgNPs complex as SERS probe for U937 cell identification. Biosens Bioelectron 74:398–405

    Article  Google Scholar 

  • Liechty WB, Kryscio DR, Slaughter BV, Peppas NA (2010) Polymers for drug delivery systems. Annu Rev Chem Biomol Eng 1:149–173

    Article  Google Scholar 

  • Lin WC, Yang MC (2005) Novel silver/poly(vinyl alcohol) nanocomposites for surface-enhanced Raman scattering-active substrates. Macromol Rapid Commun 26:1942–1947

    Article  Google Scholar 

  • Link S, El-Sayed MA (1999) Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods. J Phys Chem B 103:8410–8426

    Article  Google Scholar 

  • Manjón AM, Wagener P, Barcikowski S (2011) Transfer-matrix method for efficient ablation by pulsed laser ablation and nanoparticle generation in liquids. J Phys Chem C 115:5108–5114

    Article  Google Scholar 

  • Mbhele ZH, Salemane MG, Van Sittert CGCE, Nedeljkovic JM, Djokovic V, Luyt AS (2003) Fabrication and characterization of silver-polyvinyl alcohol nanocomposites. Chem Mater 15:5019–5024

    Article  Google Scholar 

  • Mishra YK, Mohapatra S, Chakravadhanula VSK, Lalla NP, Zaporojtchenko V, Avasthi DK, Faupel F (2010) Synthesis and characterization of Ag-Polymer nanocomposites. J Nanosci Nanotechnol 10:2833–2837

    Article  Google Scholar 

  • Niikura K, Iyo N, Matsuo Y, Mitomo H, Ijiro K (2013) Sub-100 nm gold nanoparticle vesicles as a drug delivery carrier enabling rapid drug release upon light irradiation. ACS Appl Mater Interfaces 5:3900–3907

    Article  Google Scholar 

  • Noori FTM, Abbas Ali N (2014) Study the mechanical and thermal properties of biodegradable polylactic acid/poly ethylene glycol nanocomposites. Int J Appl Innov Eng Manag 3(1):459–464

    Google Scholar 

  • Pfeiffer C, Parak WJ, Montenegro JM (2004) Physical and chemical properties of gold and silver nanoparticles. In: Ruiz-Molina D, Novio F, Roscin C (eds) Bio- and bioinspired nanomaterials. Wiley

  • Riley T, Heald CR, Stolnik S, Garnett MC, Illum L, Davis SS (2003) Core-shell structure of PLA-PEG nanoparticles used for drug delivery. Langmuir 19:8428–8435

    Article  Google Scholar 

  • Sau TK, Rogach AL, Jäckel F, Klar TA, Feldmann J (2010) Properties and applications of colloidal nonspherical noble metal nanoparticles. Adv Mater 22:1805–1825

    Article  Google Scholar 

  • Shameli K, Bin Ahmad M, Yunus WMdZW, Ibrahim NA, Rahman RA, Jokar M, Darroudi M (2010) Silver/poly (lactic acid) nanocomposites: preparation, characterization, and antibacterial activity. Int J Nanomed 5:573–579

  • Shameli K, Bin Ahmad M, Jazayeri SD, Shabanzadeh P, Sangpour P, Jahangirian H, Gharayebi Y (2012) Investigation of antibacterial properties silver nanoparticles prepared via green method. Chem Central J 6:73 (10 pp)

  • Sharma VK, Yngard RA, Lin Y (2009) Silver nanoparticles: green synthesis and their antimicrobial activities. Adv Colloid Interface Sci 145:83–96 and references cited therein

  • Sheng Y, Yuan Y, Liu C, Tao X, Shan X, Xu F (2009) In vitro macrophage uptake and in vivo biodistribution of PLA–PEG nanoparticles loaded with hemoglobin as blood substitutes: effect of PEG content. J Mater Sci Mater Med 20(9):1881–1891

    Article  Google Scholar 

  • Sih BC, Wolf MO (2005) Metal nanoparticle-conjugated polymer nanocomposites. Chem Commun 27:3375–3384

    Article  Google Scholar 

  • Singh R, Soni RK (2014) Laser synthesis of aluminium nanoparticles in biocompatible polymer solutions. Appl Phys A 116:689–701

    Article  Google Scholar 

  • Stalmashonak A, Seifert G, Abdolvand A (2013) Optical properties of nanocomposites containing metal nanoparticles. In: Ultra-short pulsed laser engineered metal-glass. Nanocomposites, Chap. 3. Springer, pp 17–35

  • Tong R, Tang L, Ma L, Tu C, Baumgartner R, Cheng J (2014) Smart chemistry in polymeric nanomedicine. Chem Soc Rev 43:6982–7012

    Article  Google Scholar 

  • Vinod M, Gopchandran KG (2014) Au, Ag and Au: Ag colloidal nanoparticles synthesized by pulsed laser ablation as SERS substrates. Prog Nat Sci Mater Int 24:569–578

    Article  Google Scholar 

  • Wang B, Jiang W, Yan H, Zhang X, Yang L, Deng L, Singh GK, Pan J (2011) Novel PEG-graft-PLA nanoparticles with the potential for encapsulation and controlled release of hydrophobic and hydrophilic medications in aqueous medium. Int J Nanomed 6:1443–1451

    Google Scholar 

  • Xiao RZ, Zeng ZW, Lin Zhou G, Wang JJ, Zhu Li F, Ming Wang A (2010) Recent advances in PEG–PLA block copolymer nanoparticles. Int J Nanomed 5:1057–1065

    Google Scholar 

  • Yan Z, Chrisey DB (2012) Pulsed laser ablation in liquid for micro-/nanostructure generation. J Photochem Photobiol C: Photochem Rev 13:204–223

    Article  Google Scholar 

  • Zeng H, Du XW, Singh SC, Kulinich SA, Yang S, He J, Cai W (2012) Nanomaterials via laser ablation/irradiation in liquid: a review. Adv Funct Mater 22:1333–1353

    Article  Google Scholar 

Download references

Acknowledgments

This work was partially funded by the European Community through the Programma Operativo Nazionale Ricerca e Competitività 2007 − 2013 (PON02_00355_2964193 Hippocrates Project).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. Scala or E. Fazio.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neri, F., Scala, A., Grimato, S. et al. Biocompatible silver nanoparticles embedded in a PEG–PLA polymeric matrix for stimulated laser light drug release. J Nanopart Res 18, 153 (2016). https://doi.org/10.1007/s11051-016-3467-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-016-3467-1

Keywords

Navigation