Synthesis of blue-shifted luminescent colloidal GaN nanocrystals through femtosecond pulsed laser ablation in organic solution

Research Paper

Abstract

We demonstrate the synthesis of GaN nanocrystals (NCs) with the sizes of less than the doubled exciton Bohr radius leading quantum confinement effects via a single-step technique. The generation of colloidal GaN nanoparticles (NPs) in organic solution through nanosecond (ns) and femtosecond (fs) pulsed laser ablation (PLA) of GaN powder was carried out. Ns PLA in ethanol and polymer matrix resulted in amorphous GaN-NPs with the size distribution of 12.4 ± 7.0 and 6.4 ± 2.3 nm, respectively, whereas fs PLA in ethanol produced colloidal GaN-NCs with spherical shape within 4.2 ± 1.9 nm particle size distribution. XRD and selected area electron diffraction analysis of the product via fs PLA revealed that GaN-NCs are in wurtzite structure. Moreover, X-ray photoelectron spectroscopy measurements also confirm the presence of GaN nanomaterials. The colloidal GaN-NCs solution exhibits strong blue shift in the absorption spectrum compared to that of the GaN-NPs via ns PLA in ethanol. Furthermore, the photoluminescence emission behavior of fs PLA-generated GaN-NCs in the 295–400 nm wavelength range is observed with a peak position located at 305 nm showing a strong blue shift with respect to the bulk GaN.

Keywords

Gallium nitride nanoparticles Femtosecond/nanosecond pulsed laser ablation in organic solution Ultrasmall nanocrystal generation Photoluminescence 

References

  1. Akasaki I, Amano H (1997) Crystal growth and conductivity control of group III nitride semiconductors and their application to short wavelength light emitters. Jpn J Appl Phys 36:5393–5408. doi:10.1143/JJAP.36.5393 CrossRefGoogle Scholar
  2. Alkis S, Alevli M, Burzhuev S, Vural HA, Okyay AK, Ortaç B (2012) Generation of InN nanocrystals in organic solution through laser ablation of high pressure chemical vapor deposition-grown InN thin film. J Nanopart Res 14:1048. doi:10.1007/s11051-012-1048-5 CrossRefGoogle Scholar
  3. Bagga A, Chattopadhyay PK, Ghosh S (2003) Energy levels of nitride quantum dots: wurtzite versus zinc-blende structure. Phys Rev B 68:155331. doi:10.1103/PhysRevB.68.155331 CrossRefGoogle Scholar
  4. Barcikowski S, Compagnini G (2013) Advanced nanoparticle generation and excitation by lasers in liquids. Phys Chem Chem Phys 15:3022–3026. doi:10.1039/c2cp90132c CrossRefGoogle Scholar
  5. Barcikowski S, Hahn A, Kabashin AV, Chichkov BN (2007) Properties of nanoparticles generated during femtosecond laser machining in air and water. Appl Phys A 87:47–55. doi:10.1007/s00339-006-3852-1 CrossRefGoogle Scholar
  6. Berthe L, Fabbro R, Peyre P, Tollier L, Bartnicki E (1997) Shock waves from a water-confined laser-generated plasma. J Appl Phys 82:2826–2832. doi:10.1063/1.366113 CrossRefGoogle Scholar
  7. Bittar A, Trodahl HJ, Kemp NT, Markwitz A (2001) Ion-assisted deposition of amorphous GaN: Raman and optical properties. Appl Phys Lett 78:619–621. doi:10.1063/1.1345800 CrossRefGoogle Scholar
  8. Borsella E, Garcia MA, Mattei G et al (2001) Synthesis of GaN quantum dots by ion implantation in dielectrics. J Appl Phys 90:4467–4473. doi:10.1063/1.1408591 CrossRefGoogle Scholar
  9. Brus L (1986) Electronic wave functions in semiconductor clusters: experiment and theory. J Phys Chem 90:2555–2560. doi:10.1021/j100403a003 CrossRefGoogle Scholar
  10. Cao YG, Chen XL, Li JY, Lan YC, Liang JK (2000) Observation of a quantum-confinement effect with GaN nanoparticles synthesized through a new gas reaction route. Appl Phys A 71:229–231. doi:10.1007/s003390000560 Google Scholar
  11. Chirico P, Hector AL (2010) Solvothermal synthesis of gallium and indium nitrides using lithium amide. Z Naturforschung 65:1051–1057. doi:10.1515/znb-2010-0812 Google Scholar
  12. Denbaars SP (1997) Gallium-nitride-based materials for blue to ultraviolet optoelectronics devices. Proc IEEE 85:1740–1749. doi:10.1109/5.649651 CrossRefGoogle Scholar
  13. Dimos K, Jankovic L, Koutselas IB, Karakassides MA, Zboril R, Komadel P (2012) Low-temperature synthesis and characterization of gallium nitride quantum dots in ordered mesoporous silica. J Phys Chem C 116:1185–1194. doi:10.1021/jp208011y CrossRefGoogle Scholar
  14. Dong P, Yan J, Zhang Y et al (2014) Optical properties of nanopillar AlGaN/GaN MQWs for ultraviolet light-emitting diodes. Opt Express 22:320–327. doi:10.1364/OE.22.00A320 CrossRefGoogle Scholar
  15. Echeverría-Arrondo C, Pérez-Conde J, Bhattacharjee AK (2008) Acceptor and donor impurities in GaN nanocrystals. J Appl Phys 104:044308. doi:10.1063/1.2970165 CrossRefGoogle Scholar
  16. Fan G, Wang C, Fang J (2014) Solution-based synthesis of III-V quantum dots and their applications in gas sensing and bio-imaging. Nano Today 9:69–84. doi:10.1016/j.nantod.2014.02.007 CrossRefGoogle Scholar
  17. Ganesh V, Suresh S, Balaji M, Baskar K (2010) Synthesis and characterization of nanocrystalline gallium nitride by nitridation of Ga-EDTA complex. J Alloy Compd 498:52–56. doi:10.1016/j.jallcom.2010.03.068 CrossRefGoogle Scholar
  18. Grigorescu CEA, Lee HK, Lanke UD et al (2003) Annealing amorphous GaN—a way to nano-crystalline state. In: Proceedings of 2003 5th international conference on transparent optical networks, vol 1, pp 337–339. doi:10.1109/ICTON.2003.1264649
  19. Gyger F, Bockstaller P, Gröger H, Gerthsen D, Feldmann C (2014) Quantum-confined GaN nanoparticles synthesized via liquid-ammonia-in-oil-microemulsions. Chem Commun 50:2939–2942. doi:10.1039/c4cc00180 CrossRefGoogle Scholar
  20. Hashida M, Mishima H, Tokita S, Sakabe S (2009) Non-thermal ablation of expanded polytetrafluoroethylene with an intense femtosecond-pulse laser. Opt Express 17:13116–13121. doi:10.1364/OE.17.013116 CrossRefGoogle Scholar
  21. Intartaglia R, Bagga K, Brandi F et al (2011) Optical properties of femtosecond laser-synthesized silicon nanoparticles in deionized water. J Phys Chem C 115:5102–5107. doi:10.1021/jp109351t CrossRefGoogle Scholar
  22. Kabashin AV, Meunier M (2003) Synthesis of colloidal nanoparticles during femtosecond laser ablation of gold in water. J Appl Phys 94:7941–7943. doi:10.1063/1.1626793 CrossRefGoogle Scholar
  23. Kabashin AV, Meunier M, Kingston C, Luong JHT (2003) Fabrication and characterization of gold nanoparticles by femtosecond laser ablation in an aqueous solution of cyclodextrins. J Phys Chem B 107:4527–4531. doi:10.1021/jp034345q CrossRefGoogle Scholar
  24. Kayanuma Y (1988) Quantum-size effects of interacting electrons and holes in semiconductor microcrystals with spherical shape. Phys Rev B 38:9797. doi:10.1103/PhysRevB.38.9797 CrossRefGoogle Scholar
  25. Kazlauskas K, Tamulaitis G, Zukauskas A et al (2003) Exciton and carrier motion in quaternary AlInGaN. Appl Phys Lett 82:4501–4503. doi:10.1063/1.1586782 CrossRefGoogle Scholar
  26. Klimov VI, Mikhailovsky AA, Xu S et al (2000) Optical gain and stimulated emission in nanocrystal quantum dots. Science 290:314–317. doi:10.1126/science.290.5490.314 CrossRefGoogle Scholar
  27. Kumar P, Panchakarla LS, Bhat SV, Maitra U, Subrahmanyam KS, Rao CNR (2010) Photoluminescence, white light emitting properties and related aspects of ZnO nanoparticles admixed with graphene and GaN. Nanotechnology 21:385701. doi:10.1088/0957-4484/21/38/385701 CrossRefGoogle Scholar
  28. Lau M, Barcikowski S (2015) Quantification of mass-specific laser energy input converted into particle properties during picosecond pulsed laser fragmentation of zinc oxide and boron carbide in liquids. Appl Surf Sci 348:22–29. doi:10.1016/j.apsusc.2014.07.053 CrossRefGoogle Scholar
  29. Leppert VJ, Zhang CJ, Lee HW, Kennedy IM, Risbud SH (1998) Observation of quantum confined excited states of GaN nanocrystals. Appl Phys Lett 72:3035–3037. doi:10.1063/1.121532 CrossRefGoogle Scholar
  30. Li J, Wang LW (2005) Band-structure-corrected local density approximation study of semiconductor quantum dots and wires. Phys Rev B 72:125325. doi:10.1103/PhysRevB.72.125325 CrossRefGoogle Scholar
  31. Liu P, Cao YL, Cui H, Chen XY, Yang GW (2008) Synthesis of GaN nanocrystals through phase transition from hexagonal to cubic structures upon laser ablation in liquid. Cryst Growth Des 8:559–563. doi:10.1021/cg0705963 CrossRefGoogle Scholar
  32. Liu P, Cui H, Wang CX, Yang GW (2010) From nanocrystal synthesis to functional nanostructure fabrication: laser ablation in liquid. Phys Chem Chem Phys 12:3942–3952. doi:10.1039/b918759f CrossRefGoogle Scholar
  33. Mafuné F, Kohno J, Takeda Y, Kondow T, Sawabe H (2000) Formation and size control of silver nanoparticles by laser ablation in aqueous solution. J Phys Chem B 104:9111–9117. doi:10.1021/jp001336y CrossRefGoogle Scholar
  34. Mafuné F, Kohno J, Takeda Y, Kondow T (2002) Full physical preparation of size-selected gold nanoparticles in solution: laser ablation and laser-induced size control. J Phys Chem B 106:7575–7577. doi:10.1021/jp020577y CrossRefGoogle Scholar
  35. Mazumder B, Hector AL (2008) Synthesis and applications of nanocrystalline nitride materials. J Mater Chem 19:4673–4686. doi:10.1039/b817407e CrossRefGoogle Scholar
  36. Mićić OI, Ahrenkiel SP, Bertram D, Nozik A (1999) Synthesis, structure, and optical properties of colloidal GaN quantum dots. Appl Phys Lett 75:478–480. doi:10.1063/1.124414 CrossRefGoogle Scholar
  37. Miyamura M, Tachibana K, Arakawa Y (2002) High-density and size-controlled GaN self-assembled quantum dots grown by metalorganic chemical vapor deposition. Appl Phys Lett 80:3937–3939. doi:10.1063/1.1482416 CrossRefGoogle Scholar
  38. Nakamura S, Mukai T, Senoh M (1991) High-power GaN P-N junction blue-light-emitting diodes. Jpn J Appl Phys 30:1998–2001. doi:10.1143/JJAP.30.L1998 CrossRefGoogle Scholar
  39. Nakamura S, Senoh M, Nagahama S et al (1996) Ridge-geometry InGaN multi-quantum-well-structure laser diodes. Appl Phys Lett 69:1477–1479. doi:10.1063/1.116913 CrossRefGoogle Scholar
  40. Pal S, Mahapatra R, Ray SK et al (2003) Microwave plasma oxidation of gallium nitride. Thin Solid Films 425:20–23. doi:10.1016/S0040-6090(02)01055-6 CrossRefGoogle Scholar
  41. Petersen S, Barcikowski S (2009) In situ bioconjugation: single step approach to tailored nanoparticle-bioconjugates by ultrashort pulsed laser ablation. Adv Funct Mater 19:1167–1172. doi:10.1002/adfm.200801526 CrossRefGoogle Scholar
  42. Preschilla AN, Major S, Kumar N, Samajdar I, Srinivasa RS (2000) Nanocrystalline gallium nitride thin films. Appl Phys Lett 77:1861–1863. doi:10.1063/1.1311595 CrossRefGoogle Scholar
  43. Ramvall P, Tanaka S, Nomura S, Riblet P, Aoyagi Y (1998) Observation of confinement-dependent exciton binding energy of GaN quantum dots. Appl Phys Lett 73:1104–1106. doi:10.1063/1.122098 CrossRefGoogle Scholar
  44. Reiss P, Protière M, Li L (2009) Core/shell semiconductor nanocrystals. Small 5:154–168. doi:10.1002/smll.200800841 CrossRefGoogle Scholar
  45. Reshchikov MA, Morkoç H (2005) Luminescence properties of defects in GaN. J Appl Phys 97:061301. doi:10.1063/1.1868059 CrossRefGoogle Scholar
  46. Sardar K, Rao CNR (2004) New solvothermal routes for GaN nanocrystals. Adv Mater 16:425–429. doi:10.1002/adma.200306050 CrossRefGoogle Scholar
  47. Schaumberg CA, Wollgarten M, Rademann K (2015) Fragmentation mechanism of the generation of colloidal copper(I) iodide nanoparticles by pulsed laser irradiation in liquids. Phys Chem Chem Phys 17:17934. doi:10.1039/c5cp01153a CrossRefGoogle Scholar
  48. Son KA, Liao A, Lung G et al (2010) GaN-based high-temperature and radiation-hard electronics for harsh environments. Nanosci Nanotechnol Lett 2:89–95. doi:10.1166/nnl.2010.1063 CrossRefGoogle Scholar
  49. Stumm P, Drabold DA (1997) Can amorphous gan serve as a useful electronic material? Phys Rev Lett 79:677–680. doi:10.1103/PhysRevLett.79.677 CrossRefGoogle Scholar
  50. Trelenberg TW, Dinh LN, Saw CK, Stuart BC, Balooch M (2004) Femtosecond pulsed laser ablation of GaAs. Appl Surf Sci 221:364–369. doi:10.1016/S0169-4332(03)00937-1 CrossRefGoogle Scholar
  51. Tsuji T, Kakita T, Tsuji M (2003) Preparation of nano-size particles of silver with femtosecond laser ablation in water. Appl Surf Sci 206:314–320. doi:10.1016/S0169-4332(02)01230-8 CrossRefGoogle Scholar
  52. Wolter SD, Luther BP, Waltemyer DL et al (1997) X-ray photoelectron spectroscopy and X-ray diffraction study of the thermal oxide on gallium nitride. J Appl Phys Lett 70:2156–2158. doi:10.1063/1.118944 CrossRefGoogle Scholar
  53. Wu H, Yang R, Song B et al (2011) Biocompatible inorganic fullerene-like molybdenum disulfide nanoparticles produced by pulsed laser ablation in water. ACS Nano 5:1276–1281. doi:10.1021/nn102941b CrossRefGoogle Scholar
  54. Xi-Feng Y, Zhao-Lin L, Ping-Ping C, Xiao-Shuang C, Tian-Xin L, Wei L (2008) Broadening of photoluminescence by nonhomogeneous size distribution of self-assembled InAs quantum dots. Chin Phys Lett 25:3059. doi:10.1088/0256-307X/25/8/087 CrossRefGoogle Scholar
  55. Yang GW (2007) Laser ablation in liquids: applications in the synthesis of nanocrystals. Prog Mater Sci 52:648–698. doi:10.1016/j.pmatsci.2006.10.016 CrossRefGoogle Scholar
  56. Yang GW (2012) Laser ablation in liquids: principles and applications in the preparation of nanomaterials. Pan Standford, SingaporeCrossRefGoogle Scholar
  57. Yang Y, Leppert VJ, Risbud SH et al (1999) Blue luminescence from amorphous GaN nanoparticles synthesized in situ in a polymer. Appl Phys Lett 74:2262–2264. doi:10.1063/1.123819 CrossRefGoogle Scholar
  58. Yoffe AD (2002) Low-dimensional systems: quantum size effects and electronic properties of semiconductor microcrystallites (zero-dimensional systems) and some quasi-two-dimensional systems. Adv Phys 51:799–890. doi:10.1080/0001873011011745 CrossRefGoogle Scholar
  59. Zeng HB, Du XW, Singh SC (2012) Nanomaterials via laser ablation/irradiation in liquid: a review. Adv Funct Mater 22:1333–1353. doi:10.1002/adfm.201102295 CrossRefGoogle Scholar
  60. Zhuang NF, Wang X, Fei F et al (2013) Mild-temperature synthesis and first-principle fluorescence simulation of GaN nanoparticles. J Nanopart Res 15:1458. doi:10.1007/s11051-013-1458-z CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Department of Electrical and Electronics EngineeringTurgut Özal UniversityKeçiörenTurkey
  2. 2.National Nanotechnology Research CenterBilkent UniversityBilkentTurkey
  3. 3.Institute of Material Science and NanotechnologyBilkent UniversityBilkentTurkey

Personalised recommendations