Bifunctional bridging linker-assisted synthesis and characterization of TiO2/Au nanocomposites

  • Vojka ŽuničEmail author
  • Mario Kurtjak
  • Danilo Suvorov
Research Paper


Using a simple organic bifunctional bridging linker, titanium dioxide (TiO2) nanoparticles were coupled with the Au nanoparticles to form TiO2/Au nanocomposites with a variety of Au loadings. This organic bifunctional linker, meso-2,3-dimercaptosuccinic acid, contains two types of functional groups: (i) the carboxyl group, which enables binding to the TiO2, and (ii) the thiol group, which enables binding to the Au. In addition, the organic bifunctional linker acts as a stabilizing agent to prevent the agglomeration and growth of the Au particles, resulting in the formation of highly dispersed Au nanoparticles. To form the TiO2/Au nanocomposites in a simple way, we deliberately applied a synthetic method that simultaneously ensures: (i) the capping of the Au nanoparticles and (ii) the binding of different amounts of Au to the TiO2. The TiO2/Au nanocomposites formed with this method show enhanced UV and Vis photocatalytic activities when compared to the pure TiO2 nanopowders.

Graphical Abstract


Bifunctional bridging linker TiO2/Au nanocomposites Plasmonic noble metal Photocatalytic activity 



The authors wish to thank Dr. Janez Zavašnik from the Jožef Stefan Institute for the HAADF–STEM analysis.


  1. Alkilany AM et al (2014) Colloidal stability of citrate and mercaptoacetic acid capped gold nanoparticles upon lyophilization: effect of capping ligand attachment and type of cryoprotectants. Langmuir 30:13799–13808. doi: 10.1021/la504000v CrossRefGoogle Scholar
  2. Anandan S, Ashokkumar M (2009) Sonochemical synthesis of Au-nanoparticles for the sonophotocatalytic degradation of organic pollutants in aqueous environment. Ultrason Sonochem 16:316–320. doi: 10.1016/j.ultsonch.2008.10.010 CrossRefGoogle Scholar
  3. Ao CH, Lee SC (2005) Indoor air purification by photocatalyst TiO2 immobilized on an activated carbon filter installed in an air cleaner. Chem Eng Sci 60:103–109. doi: 10.1016/j.ces.2004.01.073 CrossRefGoogle Scholar
  4. Bračko I, Jančar B, Logar M, Caglič D, Suvorov D (2011) Silver nanoparticles on titanate nanobelts via the self-assembly of weak polyelectrolytes: synthesis and photocatalytic properties. Nanotechnology 22:085705CrossRefGoogle Scholar
  5. Cao J, Galbraith EK, Sun T, Grattan KTV (2012) Effective surface modification of gold nanorods for localized surface plasmon resonance-based biosensors. Sens Actuators B 169:360–367. doi: 10.1016/j.snb.2012.05.019 CrossRefGoogle Scholar
  6. Carp O, Huisman CL, Reller A (2004) Photoinduced reactivity of titanium dioxide. Prog Solid State Chem 32:33–177. doi: 10.1016/j.progsolidstchem.2004.08.001 CrossRefGoogle Scholar
  7. Chong MN, Jin B, Chow CWK, Saint C (2010) Recent developments in photocatalytic water treatment technology: a review. Water Res 44:2997–3027. doi: 10.1016/j.watres.2010.02.039 CrossRefGoogle Scholar
  8. Connor PA, Dobson KD, McQuillan AJ (1999) Infrared spectroscopy of the TiO2/aqueous solution interface. Langmuir 15:2402–2408. doi: 10.1021/la980855d CrossRefGoogle Scholar
  9. Cui F, Hua Z, Wei C, Li J, Gao Z, Shi J (2009) Highly dispersed Au nanoparticles incorporated mesoporous TiO2 thin films with ultrahigh Au content. J Mater Chem 19:7632–7637. doi: 10.1039/B912016E CrossRefGoogle Scholar
  10. Dibbell RS, Soja GR, Hoth RM, Watson DF (2007) Photocatalytic patterning of monolayers for the site-selective deposition of quantum dots onto TiO2 surfaces. Langmuir 23:3432–3439. doi: 10.1021/la063161a CrossRefGoogle Scholar
  11. Dumur F, Guerlin A, Dumas E, Bertin D, Gigmes D, Mayer C (2011) Controlled spontaneous generation of gold nanoparticles assisted by dual reducing and capping agents. Gold Bull 44:119–137. doi: 10.1007/s13404-011-0018-5 CrossRefGoogle Scholar
  12. Fang J, Cao S-W, Wang Z, Shahjamali MM, Loo SCJ, Barber J, Xue C (2012) Mesoporous plasmonic Au–TiO2 nanocomposites for efficient visible-light-driven photocatalytic water reduction. Int J Hydrog Energy 37:17853–17861. doi: 10.1016/j.ijhydene.2012.09.023 CrossRefGoogle Scholar
  13. Furube A, Du L, Hara K, Katoh R, Tachiya M (2007) Ultrafast plasmon-induced electron transfer from gold nanodots into TiO2 nanoparticles. J Am Chem Soc 129:14852–14853. doi: 10.1021/ja076134v CrossRefGoogle Scholar
  14. Ismail AA, Bahnemann DW, Bannat I, Wark M (2009) Gold nanoparticles on mesoporous interparticle networks of titanium dioxide nanocrystals for enhanced photonic efficiencies. J Phys Chem C 113:7429–7435. doi: 10.1021/jp900766g CrossRefGoogle Scholar
  15. Jakob M, Levanon H, Kamat PV (2003) Charge distribution between UV-irradiated TiO2 and gold nanoparticles: determination of shift in the Fermi level. Nano Lett 3:353–358. doi: 10.1021/nl0340071 CrossRefGoogle Scholar
  16. Jesson DE, Pennycook SJ (1995) Incoherent imaging of crystals using thermally scattered electrons. Proc R Soc Lond A 449:273–293. doi: 10.1098/rspa.1995.0044 CrossRefGoogle Scholar
  17. Li H, Bian Z, Zhu J, Huo Y, Li H, Lu Y (2007) Mesoporous Au/TiO2 nanocomposites with enhanced photocatalytic activity. J Am Chem Soc 129:4538–4539. doi: 10.1021/ja069113u CrossRefGoogle Scholar
  18. Linic S, Christopher P, Ingram DB (2011) Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nat Mater 10:911–921CrossRefGoogle Scholar
  19. Link S, El-Sayed MA (1999) Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles. J Phys Chem B 103:4212–4217. doi: 10.1021/jp984796o CrossRefGoogle Scholar
  20. Liu Y, Li J, Qiu X, Burda C (2007) Bactericidal activity of nitrogen-doped metal oxide nanocatalysts and the influence of bacterial extracellular polymeric substances (EPS). J Photochem Photobiol A 190:94–100. doi: 10.1016/j.jphotochem.2007.03.017 CrossRefGoogle Scholar
  21. Logar M, Jančar B, Šturm S, Suvorov D (2010) Weak polyion multilayer-assisted in situ synthesis as a route toward a plasmonic Ag/TiO2 photocatalyst. Langmuir 26:12215–12224. doi: 10.1021/la101124q CrossRefGoogle Scholar
  22. Logar M, Bračko I, Potočnik A, Jančar B (2014) Cu and CuO/titanate nanobelt based network assemblies for enhanced visible light photocatalysis. Langmuir 30:4852–4862. doi: 10.1021/la5008704 CrossRefGoogle Scholar
  23. López R, Gómez R (2012) Band-gap energy estimation from diffuse reflectance measurements on sol–gel and commercial TiO2: a comparative study. J Sol–Gel Sci Technol 61:1–7. doi: 10.1007/s10971-011-2582-9 CrossRefGoogle Scholar
  24. Love JC, Estroff LA, Kriebel JK, Nuzzo RG, Whitesides GM (2005) Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem Rev 105:1103–1170. doi: 10.1021/cr0300789 CrossRefGoogle Scholar
  25. Negishi Y, Tsukuda T (2003) One-pot preparation of subnanometer-sized gold clusters via reduction and stabilization by meso-2,3-dimercaptosuccinic acid. J Am Chem Soc 125:4046–4047. doi: 10.1021/ja0297483 CrossRefGoogle Scholar
  26. Oros-Ruiz S, Zanella R, López R, Hernández-Gordillo A, Gómez R (2013) Photocatalytic hydrogen production by water/methanol decomposition using Au/TiO2 prepared by deposition–precipitation with urea. J Hazard Mater 263(Part 1):2–10. doi: 10.1016/j.jhazmat.2013.03.057 CrossRefGoogle Scholar
  27. Pu Y-C et al (2013) Au nanostructure-decorated TiO2 nanowires exhibiting photoactivity across entire UV–visible region for photoelectrochemical water splitting. Nano Lett 13:3817–3823. doi: 10.1021/nl4018385 CrossRefGoogle Scholar
  28. Qian S, Wang C, Liu W, Zhu Y, Yao W, Lu X (2011) An enhanced CdS/TiO2 photocatalyst with high stability and activity: effect of mesoporous substrate and bifunctional linking molecule. J Mater Chem 21:4945–4952. doi: 10.1039/C0JM03508D CrossRefGoogle Scholar
  29. Sarangi SN, Hussain AMP, Sahu SN (2009) Strong UV absorption and emission from l-cysteine capped monodispersed gold nanoparticles. Appl Phys Lett 95:073109. doi: 10.1063/1.3210788 CrossRefGoogle Scholar
  30. Scanlon DO et al (2013) Band alignment of rutile and anatase TiO2. Nat Mater 12:798–801. doi: 10.1038/nmat3697
  31. Seah MP, Gilmore IS, Beamson G (1998) XPS: binding energy calibration of electron spectrometers 5—re-evaluation of the reference energies. Surf Interface Anal 26:642–649. doi: 10.1002/(SICI)1096-9918(199808)26:9<642:AID-SIA408>3.0.CO;2-3 CrossRefGoogle Scholar
  32. Silverstein RM, Webster FX, Kiemle D (2005) Spectrometric identification of organic compounds, 7th edn. Wiley, New YorkGoogle Scholar
  33. Smith JG, Faucheaux JA, Jain PK (2015) Plasmon resonances for solar energy harvesting: a mechanistic outlook. Nano Today 10:67–80. doi: 10.1016/j.nantod.2014.12.004 CrossRefGoogle Scholar
  34. Subramanian V, Wolf EE, Kamat PV (2004) Catalysis with TiO2/gold nanocomposites. Effect of metal particle size on the Fermi level equilibration. J Am Chem Soc 126:4943–4950. doi: 10.1021/ja0315199 CrossRefGoogle Scholar
  35. Tanaka A et al (2012) Gold–titanium(IV) oxide plasmonic photocatalysts prepared by a colloid-photodeposition method: correlation between physical properties and photocatalytic activities. Langmuir 28:13105–13111. doi: 10.1021/la301944b CrossRefGoogle Scholar
  36. Tian Y, Tatsuma T (2005) Mechanisms and applications of plasmon-induced charge separation at TiO2 films loaded with gold nanoparticles. J Am Chem Soc 127:7632–7637. doi: 10.1021/ja042192u CrossRefGoogle Scholar
  37. Vukomanovic M, Logar M, Skapin SD, Suvorov D (2014) Hydroxyapatite/gold/arginine: designing the structure to create antibacterial activity. J Mater Chem B 2:1557–1564. doi: 10.1039/C3TB21612H CrossRefGoogle Scholar
  38. Wang H, Faria JL, Dong S, Chang Y (2012) Mesoporous Au/TiO2 composites preparation, characterization, and photocatalytic properties. Mater Sci Eng B 177:913–919. doi: 10.1016/j.mseb.2012.04.015 CrossRefGoogle Scholar
  39. Wu Z, Suhan J, Jin R (2009) One-pot synthesis of atomically monodisperse, thiol-functionalized Au25 nanoclusters. J Mater Chem 19:622–626. doi: 10.1039/B815983A CrossRefGoogle Scholar
  40. Zhong Z, Lin J, Teh SP, Teo J, Dautzenberg FM (2007) A rapid and efficient method to deposit gold particles onto catalyst supports and its application for CO oxidation at low temperatures. Adv Funct Mater 17:1402–1408. doi: 10.1002/adfm.200601121 CrossRefGoogle Scholar
  41. Zhou Q, Fu M-L, Yuan B-L, Cui H-J, Shi J-W (2011) Assembly, characterization, and photocatalytic activities of TiO2 nanotubes/CdS quantum dots nanocomposites. J Nanopart Res 13:6661–6672. doi: 10.1007/s11051-011-0573-y CrossRefGoogle Scholar
  42. Žunič V, Škapin SD, Maček-Kržmanc M, Bračko I, Škapin SA, Suvorov D (2011) Influence of the triblock copolymer P123 and phosphorous on the physico-chemical properties of TiO2. Appl Catal A 397:241–249. doi: 10.1016/j.apcata.2011.03.007 CrossRefGoogle Scholar
  43. Žunič V, Vukomanović M, Škapin SD, Suvorov D, Kovač J (2014) Photocatalytic properties of TiO2 and TiO2/Pt: a sol-precipitation, sonochemical and hydrothermal approach. Ultrason Sonochem 21:367–375. doi: 10.1016/j.ultsonch.2013.05.018 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Advanced Materials DepartmentJožef Stefan InstituteLjubljanaSlovenia

Personalised recommendations